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FOREWORD

This report is one of a series of research efforts designed
to improve the selection and classification efficiency of the
Armed Services Vocational Aptitude Battery (ASVAB). The research
reported is unique in that it contributes to both methodological
issues in personnel assignment theory and to the formulation of
new job-matching policies based on scientific principles. It is
an example of how basic research can stimulate and provide direc-
tion to applied research.

Two important general conclusions can be drawn from the
findings. First, we see a higher classification efficiency in-
herent in the ASVAB than is usually posited. Second, the exist-
ing operational assignment composites could be reconstituted to
substantially improve classification efficiency by considering
the expansion of the number of job families, by clustering jobs
into classification-efficient job families, and by using assign-
ment variables of least squares estimates of performance based on
all variables in the operational test battery.

Such a major reconstitution of job families in the Army's
classification systems must be based on all available validity
data as well as on information available from job analyses. A
number of personnel classification and assignment policy issues
also must be resolved before a new system incorporating differ-
ential assignment concepts and principles can be implemented.
The results of this research, however, should eventually lead to
very substantial gains in classification efficiency.

EDGAR M. J HNSON
Technical Director
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IMPROVING CLASSIFICATION EFFICIENCY

BY RESTRUCTURING ARMY JOB FAMILIES

SUMMARY

A. Introduction

The present selection and assignment model sampling experiment is a basic research

effort that contributes to the practical body of knowledge essential to both a formulation of

personnel job matching policies based on scientific principles and the design of research to

provide effective techniques and tools for the implementation of these policies. The findings of

this experiment are organized and interpreted in the context of differential assignment theory

(DAT).

Our knowledge of DAT derives from the results provided by psychometric theory,

modeling, and simulations of personnel selection and classification processes across a broad area

of topics that includes specifying and evaluating (1) personnel measures for inclusion in

experimental and operational batteries; (2) selection and assignment variables such as aptitude

areas (AAs); (3) selection and assignment strategies and algorithms; and (4) sets of job families

corresponding to the assignment variables. This study focuses on the latter, more specifically,

on the gains in mean predicted performance (MPP) obtainable from a reconstitution of Army

jobs into more numerous and more classification-efficient sets of job families for use in the

classification process. As a result of the findings of this study DAT is extended and refined,

and the immediate operational implications for the Army classification system become evident.

In this summary, we emphasize the practical findings derived from the model sampling
experiment described more completely in the body of the report. As noted, the results of this

study have immediate implications for policy makers. When these results are considered in the

broader context of DAT, they point the way for immediately effecting major improvements in

the personnel classification system and a longer range redesign of the personnel classification

system to maximize classification efficiency. This complete redesign should not be completed
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until further validity data becomes available. Expected results have the potential of improving

the Army's annual productivity by an amount that would cost the Army hundreds of millions of

dollars each year if achieved by using alternative approaches such as recruiting a greater

proportion of high-quality personnel or the use of longer and/or more intense training programs.

B. Operational Issues

For more than a decade, there have been a number of advocates calling for the reduction

of the number of job families used by the Army in its classification system. These advocates

frequently pointed out that there are no more than four strong content clusters (i.e., group

factors) in the test content of the ASVAB and that four job families corresponding to the Air

Force's four job groupings would adequately reflect ASVAB content. Such an arLument, of

course, requires the equating of predictor dimensionality with the number of job families to

which these predictors can be used to make reliable assignments. Proving this argument to be

fallacious is a major objective of this study.

We argue that mean predicted performance (MPP) is the figure of merit most appropriate

for comparing the benefits obtainable from the implementation of alternative system designs and

operational strategies for selecting and assigning personnel. Unfortunately, many investigators

prefer to use predictive validity as the measure of classification efficiency. They define

classification efficiency in terms of the effect that proposed changes have on the validities of

assignment variables for performance in jobs within their associated job families.

Investigators that rely on predictive validity as the measure of classification efficiency

are typically quite pessimistic about the value or utility of personnel classification. They appear

to be greatly influenced by the degree of unidimensionality in the predictor space and the

undeniably dominant contribution that the largest principal component (PC) factor makes to both

the predictor intercorrelations and validities. Thus, they assert that the dominance of the first

(largest) PC factor prevents the realization of significant classification effects. These advocates

also are typically impressed with the lack of stability in regression weights when used in

independent samples. Much of this pessimism results directly from the use of predictive validity

as the measure of classification efficiency.
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The present research uses MPP as the measure of classification efficiency and permits

effects of both dimensionality and instability of regression weights to appropriately affect

measures of classification efficiency. The results remain entirely free of the effect of all sample

error and biases in one experiment (Design A) and are essentially free of all biases that might

affect the comparisons of the primary conditions in the second experiment (Design B). A cross

validation design is used in both.

Factors relevawt to the design of an optimal classification component of personnel systems

are investigated in this study. These factors can be summarized as follows:

1. Number of job families and corresponding assignment variables, (e.g., the Air Force

has 4 composites or assignment variables, the Army has 9, the Navy has 11 and the

Marines have 5). DAT recommends as many as can be provided stable weights for the

assignment variables (AVs) by the available validity data.

2. Alternative methods for forming job families.

3. Alternative methods for constituting AVs.

4. The effect of using a more economical criterion variable, (e.g., use of the Skill

Qualifications Test, SQT, to determine job family structure and it: ise as the

dependent variable for computing "best" weights for the formulation of assignment

variables).

5. Size and heterogeneity of the test battery from which the assignment variables are

formed.

6. Size of analysis samples required to form assignment variables, (e.g., by computing

"best' weights for the tests in a test composite).

In the present study, emphasis is on the first two of the six factors outlined above. The

remaining four factors are introduced, in a less complete fashion, to provide a contextual basis

of determining practical interactions with the two primary factors. Mean predicted performance

(MPP) is used to compare levels within and across these factors.
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C. Research Approach

It is possible to conduct a study of this type either by drawing samples from a large data

bank of empirical test scores or by generating sets of synthetic scores which have the statistical

properties of empirical scores, including their expected intercorrelations, validities, means,

variances, and shape of their score distributions. In either case, the assignment and classification

processes associated with each alternative policy being investigated must be simulated and mean

predicted performance computed at the conclusion of each simulation.

We chose to conduct the present study by generating sets (vectors) of synthetic scores

separately based on the data from multiple jobs, 18 and 60 respectively, provided by two major

Project A empirical studies. Each empirical data set is corrected for restriction in range due to

selection effects and the criterion variables corrected for unreliability. The corrected predictor

covariances and validities are then used to represent the two separate designated populations

from which synthetic scores are drawn. The Design A experiment uses Project A concurrent

study data which provides the covariances of 29 predictors and validities for 18 MOS provides.

These 18 empirical samples provide the parameters to define the designated population for

Design A.

Covariances among ASVAB tests and validities of these tests against SQT scores for 60

MOS were selected from a Project A data bank, corrected for restriction in range and

attenuation, and used to compute the parameters to define the designated population for Design

B. Both designated populations are assumed to represent the same youth population.

We refer to the simulation of personnel system processes using synthetic scores as model

sampling. Our use of model sampling has several major advantages over the use of empirical

scores to conduct system simulations. For example, model sampling permits the generation of

as many independent samples as desired from the population from which recruiting and selection

is accomplished, and thus allows the use of a research design that controls or measures the

effects of different sources of sampling error or bias.

In Design A, the designated population is used to generate: (1) an analysis sample with

the same number of entities in each MOS as is present in the empirical data set used to define

the designated population, and (2) 20 independent cross samples for use in the simulations. Each
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cross sample is used separately for each condition in a repeated measures design. The analysis

sample is used in applying the empirical job clustering method to form job families and in

computing the "best" weights to be applied to cross sample scores to form predicted performance

measures (FLS composites) for use as AVs in the simulations. Weights from the designated

population are applied to cross sample scores at the completion of each simulation to obtain the

MPP standard scores used as measures of classification efficiency.

The designated population of Design B serves as the source of weights for both

assignment and evaluation variables. The assignment variables represent predicted performance

within job families while the evaluation variables are the predicted performance measures

separately computed for each job. After optimal assignment to a job family each entity is

randomly assigned to a job within that family and the entity's predicted performance score

computed. While scores for all evaluation variables are computed using weights computed on

independent samples, avoiding traditional back sample inflation, the less well known effect of

correlated error across assignment and evaluation variables was not eliminated in Design B as

it was in Design A. Since psychometricians lack experience in the effects of this kind of bias,

we avoid making the kind of experimental comparisons in Design B which would be most

affected by its presence. We do not, for example, contrast the classification efficiency of a

priori and empirically determined weights for the test composites making up the assignment

variables of Design B.

D. Major Findings

L, Design A

It is unfortunate that in this experiment, for Design A, we have the best criterion

variables, but we also have only 18 jobs. This limitation severely limits what we can determine

h this experiment and is the reason why we also provided for Design B where 60 MOS could

be utilized. However, some of the most important conclusions of this study are drawn from

Design A where we have both the more credible criterion variables and a more complete control

of correlated error and biases.
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In each simulation of both Design A and Design B, we first reject 25 percent of the

entities of each sample on the basis of their AFQT scores. We then optimally assign the entities

to job families. All MPP standard scores reported in this summary give the expected MPP

standard score after the results of selection were subtracted from the total MPP standard score

obtained as a result of simulating both selection and optimal assignment. For our baseline

condition in Design A, we distribute the 18 jobs into the current 9 operational job families and

use the existing aptitude area (AA) scores as the assignment variables.

Making selection and assignment decisions by chance yields an MPP standard score equal

to zero. Selecting 75 percent of the entities as having the highest AFQT scores, provides an

expected MPP of .225 for Design A under the hypothetical condition of random assignment to

jobs. Using the operational AAs and job families in conjunction with an optimal assignment

algorithm adds only .092 to the MPP standard score. As noted above, we use this condition in

Design A as our baseline against which to examine the gains obtainable from adding

improvements by stages; the percentage improvement over both the baseline condition and the

previous stage is given at each stage.

In stage one, we substitute 9 least square weighted composites based on the full ASVAB

(FLS-ASVAB composites) for the 9 operational aptitude area composites. This yields an MPP

attributable to classification effects of .214, an increase over baseline of 133 percent.

In stage two, we substitute the 9 classification-efficient job families for the 9 operational

job families while using the corresponding FLS-ASVAB composites as assignment variables.

This provides an MPP that is greater than that provided by selection (MPP = .245), a

percentage increase over baseline of 166 percent, and a gain over stage one of 14.5 percent.

For stage three, we increase the job families from 9 to 12 while still using corresponding

FLS-ASVAB composites as assignment variables. This change provides an MPP due to

classification of .277, an increase of 201 percent over baseline and 13 percent over stage two.

Stage four involves the substitution of the 29 Project A concurrent validation

experimental variables for the 9 ASVAB tests in the computation of the corresponding FLS

composites -- providing a measure of the upper limit of the gain in MPP obtainable from the

optimal use of the Project A experimental predictors to expand the dimensionality of the

operational classification battery. The use of these FLS-experimental composites for making
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optimal assignments to the 12 classification-efficient job families provides an MPP due to

classification of .367, an increase of 299 percent over baseline and 32.5 percent over the MPP

obtained in stage three.

The reduction in the number of job families from 9 to 6 provides a reduction in MPP to

.191 when the FLS-ASVAB are used as AVs; this is a 22 percent reduction when compared to

the stage two results. A reduction of 24 percent results if FLS-experimental composites are used

instead of FLS-ASVAB composites in a parallel comparison of assignment to 6 classification-

efficient job families as compared to the use of 9 classification-efficient job families for this

purpose.

2. Design B

The 60 MOS for which Skill Qualification Test (SQT) scores are available permit the

clustering of jobs into three sets of a priori job families as follows: (1) the 9 operational job

families used by the Army for initial classification and assignment; (2) 23 of the Army's 35

career management fields (CMFs); (3) an intermediate set of 16 families based on a compromise

between the two sets of a priori clustering concepts. An empirical classification-efficient

clustering algorithm was used to provide parallel sets of 9, 16 and 23 job families. MPP is

computed after all of the entities are optimally assigned to a job family within one of the six sets

of job families. The FLS-ASVAB composites are used as assignment variables for making

optimal assignments to job families within each of the six sets.

The Design B baseline is provided by FLS-ASVAB composites using the 60 jobs formed

into the 9 operational job families. This results in an MPP standard score of .135. The use of

16 a priori job families results in an MPP of .258, a 91 percent improvement. An increase to

23 CMF job families results in an MPP of .297, an improvement of 120 percent. Similarly,

increasing the number of empirically determined classification-efficient job families from 9 to

16 improves MPP by 24.4 percent, and an increase from 9 to 23 job families in the classification

system provides an improvement of 40.6 percent. The above results, plus those obtained from

an increase from 16 to 23 job families, are provided in Table S-1.

The substitution of the empirically determined job families for the a priori job families

increases MPP by 97 percent when there are 9 job families, 28 percent when there are 16 job

families, and 26 percent when there are 23 job families. The total gain in MPP achieved from
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Table S-1

COMPARISON OF DIFFERENCES AND PERCENTAGE GAINS IN
MPP USING SQT AS THE CRITERION FOR 60 JOBS

Number of Job Families

Empirical Operational

Difference % Cain Difference % Gain

Increase from:

9 to 16 .065 24.4 .123 91.1

16 to 23 .043 13.0 .039 15.1

9 to 23 .108 40.6 .162 120.0

S-8



changing the structure of the 60 MOS from 9 operational job families to a classification-efficient

set of 23 job families provides a gain of 177 percent, of which 120 percent is immediately

obtainable from the increase in number of job families and the additional 57 percent can then

be obtained from also using the improved method of structuring jobs. If the first change is in

the method of forming job families, the first gain is 97 percent and the second gain, from also

increasing job families from 9 to 23, is 80 percent.

E. Conclusions and Recommendations

1. Theoretical Implications

The findings of this study strongly support a number of DAT principles including:

a. The largest immediate improvement that can be provided for any personnel

classification system is the use as assignment variables of least square estimates of

performance based on all variables in the operational test battery, that is, the adoption

of full least square (FLS) composites as replacements for the present type of

aptitude area composites.

b. The optimal number of job families for inclusion in an FLS composite based

personnel classification system is as many families as can be coupled with adequately

valid assignment variables. The factor limiting the number of job families is the

availability of validity data for the constituent jobs in the job families. For example,

although there are approximately 260 entry-level Army jobs, the Project A database used

for this study would not be able to provide even minimal validity data for more

than about 40 job families.

c. Whenever it is not feasible to provide separate FLS composites for each job, it is

essential that jobs be clustered into job families in a manner that maximizes

classification efficiency.

d. The expansion of the dimensionality of the classification battery by the inclusion of

more predictors with greater heterogeneity can be expected to increase the potential

classification efficiency to about the same extent as can be accomplished by the use of

more classification-efficient job families in place of the existing a priori job families.
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The principles given above are very strongly supported by the results of this study. Some

investigators have suggested contradictory classification system guidelines based on erroneously

equating classification efficiency to predictive validity. But when measurement of classification

efficiency is made in terms of MPP, computed after entities have been optimally assigned to

jobs, as in this study, DAT principles have been consistently validated.

2. Operational Implications

Design A provides further evidence that the operational AA test composites are grossly

inadequate. At the same time, data strongly suggest that the present ASVAB tests have

sufficient multidimensionality and differential validity to permit effective personnel classification.

In the present study, we see that assignment variables derived from the ASVAB (of the type

recommended by DAT) have a 133 percent improvement over the operational AVs. The

additional classification efficiency provided by adding all 20 of the Project A concurrent

validation experimental variables to the 9 existing ASVAB tests to form a new, much larger,

classification battery provides a further gain in MPP of 32.5 percent.

While the procedures used to form the existing operational job families are clearly not

optimal, they are much more effective than are the AA composites corresponding to each family.

Most of the potential increase in MPP obtainable from using more job families is available from

the use of a priori job families that meet other operational needs.

The primary technical report on Project A (McLaughlin, Rossmeissl, Wise, Brandt, and

Wang, 1984) concludes that job clustering processes in the context of the same validity data as

used for our Design B lacked sufficient stability to warrant confidence that any gains provided

would be demonstrable in independent samples. However, the emphasis in McLaughlin, et al.

(1984) was on the instability of the regression weights for FLS composites, rather than on the

MPP achievable from the optimal assignment of entities in independent samples to alternative

job families. DAT favors the latter utility approach over the use of psychometric indices, as

favored by McLaughlin et al. (1984), that have no apparent connection to utility.

Operational job families should be based on the use of all available information and must

provide for all MOS. This study has not attempted to make maximum use of even the two data

sets selected for use with Design A and Design B, let alone make use of all of the validity

information available to the Army. Thus, while we believe our findings to be based on
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adequately representative data that permit credible conclusions regarding the utility of utilizing

more and better defined job families in the Army initial classification system, we do not

recommend the installation of the specific job families identified in this study. We instead

recommend the integration, through expert judgment, of the information from: (1) our CE job

clustering procedure as used on Design A, Design B, and additional data sets; (2) CMF

membership of each MOS; and, (3) classification family membership of each MOS. The use

of such an integrated approach would readily provide 20 to 30 credibly classification-efficient

job families for use in a revised classification system.
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IMPROVING CLASSIFICATION EFFICIENCY BY
RESTRUCTURING ARMY JOB FAMILIES

I. INTRODUCTION

A. Objectives

The purpose of this research is to build upon the foundation of differential assignment

theory by examining the effects of restructuring Army job families on potential classification

efficiency (PCE). Specifically, this research addresses the effects on PCE of (1) increasing

the number of job families; (2) employing different job clustering methods to form job families;

(3) using full least squares (FLS) composites instead of aptitude area composites for assignment;

(4) substituting different criterion measures in the joint predictor-criterion space; (5) increasing

the dimensionality of the predictor space; and (6) computing the regression weights of FLS

composites on moderately sized analysis samples (as contrasted to the infinitely large analysis

samples used in the studies of Nord and Schmitz, 1989, 1991 and Whetzel, 1991).

Focusing on the job family structure is a promising approach to improving classification

efficiency. In this research, a new job clustering method is proposed that minimizes the

successive reduction in potential classification efficiency in the resulting job families. The goal

is to provide a job family clustering method that contributes to an improvement in the ability to

classify individuals efficiently and, thus, an increase in overall mean predicted performance

(MPP).

B. Theoretical Background

The earliest and most significant contributions to classification research come from the

psychometric theories of Hubert Brogden and Paul Horst during the 1940s and 1950s. Their

work provides the theoretical foundation for all subsequent research on classification. Building

upon the work of these early researchers, Zeidner and Johnson (Johnson & Zeidner, 1990, 1991;

Zeidner, 1987; Zeidner & Johnson, 1989a, 1989b, 1991a, 1991b) introduced differential

assignment theory (DAT) as part of a revival of classification research within the field of

personnel psychology. The following section will provide a brief review of the early work of

Brogden and Horst as it relates to the present research. In addition, the following section will
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contain a discussion of some of the key principles in differential assignment theory relevant to

this research.

1. Linlking Classification Efficiency to Performance: Brogden's Allocation Model

Hubert Brogden is responsible for directly tying measurement of classification efficiency

to mean predicted performance (MPP) and thus to the utility of classification. Brogden (1946,

1949; see also Brogden & Taylor, 1950) is probably most well-known for his models estimating

the utility of selection devices. The utility of a selection device is the degree to which its use

improves the quality of the individuals selected beyond what would have occurred had that

device not been used (Blum & Naylor, 1968). Brogden (1949) used the principles of linear

regression to demonstrate how the selection ratio and the standard deviation of job performance

in dollars affect the economic utility of a selection device.

Brogden's concentration on the utility of selection devices led naturally to the expression

of classification in the same terms. In 1959, Brogden developed a general allocation model in

which he examined the efficiency of classification as a function of the validity of the estimates

of job performance, the degree of intercorrelation of these estimates, and the number of jobs.

His goal was to show the effects of these variables on productivity when classifying individuals

to jobs. He demonstrated that MPP = R(1-r)f(m). In this formula, R is the average

predictive validity of the least squares estimates (LSEs) of job performance, r is the average

intercorrelation among the LSEs of job performance, and f(m) is an order function which reflects

the effects of increasing the number of jobs (m) or job families on classification efficiency.

From this formulation, it is apparent that when R and f(m) increase, MPP also increases.

However, note that the lower the intercorrelation among the LSEs, r, the greater the MPP. In

practice, it is not unusual to have fairly high intercorrelations among the LSEs. The significance

of Brogden's finding is that even when the intercorrelations among the estimates are high,

considerable classification efficiency remains. As Brogden points out, even with

intercorrelations of .80, classification gains are 45 % as great as with intercorrelations of zero.

Nord and Schmitz (1989, 1991) found in their empirical study that even with an average r of .95

among the predicted performance LSEs, they were able to obtain considerably greater MPP

when LSEs were used for assignment compared to when the U.S. Army's operational composites

were used for assignment,

2



The significance of Brogden's formulation to the present research is that the predictive

validity, R, and the average intercorrelation among the LSEs, r, are both affected by increasing

the number of job families. Increasing the number of job families in a classification-efficient

manner affects validity, R, because it results in more homogeneous jobs being placed together

to be predicted by a single LSE. With more homogeneous job families, more precise

classification of individuals into those families is possible. This more reliable and precise

prediction capability results in an increase in validity (R). Increasing the number of job families

in a classification-efficient manner affects the intercorrelation, r, among the LSEs because it

results in a greater uniqueness in the job families. Thus, it is possible to capitalize on the

differences among the job families resulting in a decrease in the average intercorrelation among

the LSEs.

However, Brogden (1959) also demonstrated, through the order function f(m), that even

if R and r are held constant, increasing the number of jobs will increase classification efficiency.

This effect is analogous to the effect that the selection ratio has on the selection process. For

the selection ratio, as the number of applicants increase or the number of available vacancies

decrease, more selectivity into these vacancies is possible resulting in an increase in predicted

performance. Similarly, as the number of jobs or job families increase, it is possible to more

precisely assign individuals to the jobs or job families by capitalizing on intra-individual

differences. This greater precision in assignment would also result in an increase in predicted

performance.

Brogden (1959) made a number of simplifying assumptions in order to mathematically

demonstrate the relationships just discussed. The present research provides a more realistic,

empirical test of these relationships. As the number of job families increases, validity should

increase and the intercorrelation among the LSEs should decrease. These effects should be

manifested by an increase in MPP after optimal assignment to jobs.

2. Horst's Differential Validity Index

Paul Horst (1954) is the primary contributor to the theory and methodology underlying

the design of classification-efficient test batteries. The most classification-efficient test battery

is one with the greatest differential validity. Differential validity represents the ability of a test

to forecast differences in performance in different jobs (Cascio, 1991). A simple example of
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the concept of differential validity can be illustrated through a two-job classification problem.

For two jobs, A and B, one test would be selected for inclusion in a classification-efficient

battery that had a high correlation with performance on job A and a low (or preferably negative)

correlation with performance on job B. Then, another test would be selected that had a high

correlation with performance on job B and not on job A. The resulting battery would be one

with high differential validity. The goal is to be able to predict an individual's relative fitness

for job A over job B or vice versa.

Thus, in order to develop classification-efficient test batteries, Horst (1954) needed to

first define an index of differential validity to be used for much more complex, realistic test

development. Horst's differential index, Hd, can most generally be stated as the sum of the

squared correlations between the difference of each pair of criterion scores and the

corresponding pair of differences between the best weighted predictors of each criterion. Note

that in order to compute a difference between each pair of criterion measures and the best

predictor of each difference, it is necessary to have criterion measures for each person on each

job. Since this is never possible in actual practice, Horst (1954) stipulates that predicted criteria

based on the "least-square" estimates from the test battery be substituted for the unobtainable

actual criterion measures. This theorem is a key assumption underlying classification research

since without it evaluating the efficiency of various classification batteries and classification

procedures would not be possible.

Brogden (1955) provided a rigorous proof of thi' theorem showing that, for any

assignment to jobs, the sum of the multiple regression criterion estimates will equal the sum of

the actual criterion scores. This theorem holds because the actual criterion components that are

orthogonal to the joint predictor-criterion space are totally irrelevant to either the implementation

of a selection/classification process, or to the measurement of process efficiency. The only

criterion components that are relevant are within the joint predictor-criterion space, and the

correlation of predicted performance with actual performance is unity when computed in the joint

predictor-criterion space. When both the predictors and the predicted criteria are the least

square estimates (LSEs), Horst's index simplifies to the average squared difference between each

pair of criterion measures.
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Horst's differential index, Hd, plays a key role in the present research because it is Hd

that is maximized in the classification-efficient job clustering algorithm developed for this

research. Thus, although Hd is typically used for selecting the most classification-efficient tests

for a test battery, the present research is designed to demonstrate that H can also be used in

forming classification-efficient job families.

The purpose in forming classification-efficient job families with the use of Hd is to

provide an increase in MPP. Horst (1954) was simply defining a psychometric index and

provides no link to the measurement of MPP. However, it has been demonstrated that Horst's

differential index can be directly linked to MPP, and thus to utility, through its relationship to

Brogden's measure of classification efficiency (Johnson & Zeidner, 1990, 1991).

Brogden's 1959 model is based on a set of assumptions regarding the relationships among

and across predictor and criterion variables %'hnson & Zeidner, 1990, 1991). These

relationships can be depicted in terms of Spearman's Two Factor theory. Brogden's assumptions

are met if: (a) the factor matrix, F,, is a matrix such that FvF,' is equal to C. (the covariances

among predicted performance scores), (b) all elements of the first general factor (the g factor)

from F, are equal to the product R(r)1r , and (c) the remaining factors (specific unique factors)

from F,, can be expressed as a diagonal matrix with the diagonal elements equal to R(l-r)1r . It

is possible to show a link between Brogden's model and Horst's differential validity index

because Horst's Hd is equal to the sum of the squared deviations from the column means of each

element of F,. The sum of squared deviations for the first column of F, (the g factor) is equal

to zero, and the sum of the squared deviations for the remaining m columns of F, (the unique

factors) is R(l-r). Thus, Hd is equal to (m-l) times R(1-r) when Brogden's assumptions are met.

Brogden's complete formula for mean predicted performance is: MPP = R(1-r)'1f(m).

Therefore, when substituting Horst's index it is only necessary to take the square root of I-,

divide by (m-l), and multiply by f(m) to obtain MPP when Brogden's assumptions are met.

Thus, it is reasonable to expect, to the extent that Brogden's model is robust with respect to his

assumptions, that H, closely approximates MPP. Even though we know Brogden's assumptions

are rarely met in empirical data, we can still expect that the utilization of a clustering method

that increases H. will also increase MPP. Similarly, other trends such as the increase in the
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number of job families that result in an increase in Hd, can be expected to provide a similar

increase in MPP.

3. Concepts and Principles of Differential Assignment Theory

Differential assignment theory (DAT) can be defined by four organizing concepts: (1)

to maximize benefits, a set of quantitative principles must be employed that embrace selection

of piedictors in a battery, the structure of job families, and the strategies and algorithms used

in the selection/assignment process; (2) utility models, measuring benefits in terms of mean

predicted performance, provide the best approach for specifying personnel selection policies and

procedures for operational systems; (3) benefits for both selection and classification procedures

are maximized by using the same weights for a given set of composites under optimal

conditions, while under non-optimal conditions, selection and classificaiton must be separatly

considered; and (4) any multidimensional selection/classification strategy and algorithm can be

practically implemented in operations by utilizing available computer capabilities.

Several of the key principles of DAT are directly relevant tw the current research. At

the core of DAT is the principle of multidimensionality in the joint predictor-criterion (JP-C)

sp_-ce. It is this principle that. -ves as the theoretical foundation of DAT with regard to the

nature of human abilities. DAT assumes a non-trivial degree of multidimensionality in the joint

predictor-criterion space. This means that differential assignment theory assumes there are other

factors besides the "g" factor (general cognitive ability) that can play a significant role in the

selection and classification process. This assertion is counter to the consensus established in

recent decades that a general cognitive ability component is sufficient for predicting job

performance in all jobs (see the Special Issue of the Journal of Vocational Behavior, 1986, for

a collection of opinions).

Indeed, sirce the advent of the type of validity generalization (VG) research introduced

by Frank Schmidt and John Hunter in the 1970s (Schmidt & Hunter, 1977), there has been

increasing support among measurement specialists for the sole use of g for predicting job

performance. Current VG theory, as contrasted with Mosier's (1951) earlier concept, is founded

on the principle that the g factor has an overriding influence on performance, and it is this

common element among jobs that enables validity to be generalizable across different jobs and

situations.
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DAT is enriched by broadly based VG concepts and findings. However, the VG

emphasis on the g factor, or on g plus one or two additional group factors, prevalent among

strong proponents of VG theory, is not a requisite characteristic of DAT. While the theory is

not restricted to any particular factor structure, the assumption of a non-trivial degree of

multidimensionality in the JP-C space is essential.

Recent research has shown that contrary to the belief of many VG theorists, it is possible

to demonstrate a non-trivial degree of multidimensionality in the JP-C space. Whetzel (1991)

factored the predictor-criterion covariances of the same U.S. Army Project A concurrent

validation database ued in the present research. The matrix of predictor-criterion covariances

in this database were factored and rotated such that Horst's differential index was maximized

in each successive factor (Zeidner & Johnson, 1989b, 1991b). This factoring was done in order

to identify the most classification-efficient factors in the joint predictor-criterion space and to

identify representative jobs that loaded differentially on these factors. Whetzel (1991) found that

the first factor, the g factor, accounted for 79 percent of the variance. However, with the first

factor removed it was determined that six factors contained jobs that loaded highly and

differentially on these factors and, therefore, yielded a classification-efficient solution. These

results meant that there were six non-trivial dimensions, besides the g factor, within the joint

predictor-criterion space. For the present research, it is possible to examine the effects of

changing the dimensionality of the JP-C space in two different ways. One way is to compare

assignment using the standard Armed Services Vocational Aptitude Test Battery (ASVAB) with

assignment based on the ASVAB augmented by 20 new experimental predictors. The

experimental predictors should expand the dimensionality of the JP-C thereby providing for more

efficient classification. Another way of expanding the joint predictor-criterion space that will

be used in the present research is to increase the number of job families in a classification-

efficient manner. As the number of job families is increased, each job family will become more

homogeneous within itself (more unique components and less g). Each job family will also

become more heterogenous with respect to other job families if the job families are formed by

taking differential validity into account. In other words, the idea is to expand the joint space

by forming job families that are maximally different from one another.
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Another of the key DAT principles states that the "best" selection and/or assignment

variable for maximizing either selection or classification efficiency is a full least squares (FLS)

regression composite. Note that this is a "full" composite, meaning that all of the tests in the

battery are to be included. A common misconception is that selected elimination of composites

in a battery to reduce the intercorrelations of test composites is helpful or even necessary to

increase classification efficiency. A set of FLS composites cannot be improved with respect to

classification efficiency by the elimination of tests that measure only g, or of any other tests that

might reduce the intercorrelation of test composites (Zeidner & Johnson, 1989b, 1991b).

There have been two empirical studies that have examined the potential of an FLS

composite for maximizing classification efficiency. Sorenson (1965) used simulation techniques

to compare the allocation to jobs based on full regression equations using all tests of the Army

Classification Battery instead of allocation based on two-test aptitude area composites. Sorenson

(1965) found that the gain in MPP over random assignment more than doubled by substituting

full regression equations for the aptitude areas. Nord and Schmitz (1989, 1991) simulated the

assignment of individuals to jobs in a very similar way to that used in the present research.

However, they used FLS composites with regression weights based in the nine aptitude area

composites, rather than directly on the ASVAB test scores. Nord and Schmitz (1989, 1991)

found gains in MPP of over 72% by using FLS assignment instead of the current U.S. Army

aptitude area composites. In the present research, a condition has been built into the design that

allows for another comparison of assignment with FLS composites instead of the current U.S.

Army aptitude area composites. However, unlike Nord and Schmitz (1989, 1991) the FLS

equation is based directly on the ASVAB test scores which should provide for even greater

expected gains in MPP.

Finally, the most relevant differential assignment principle for the present research is the

principle which states that, in general, increasing the number of assignment composites and

associated job families adds to potential classification efficiency. It is important to realize that

the magnitude of a gain in potential classification resulting from an increase in the number of

job families will depend on the method used to provide more job families and upon the

heterogeneity of the jobs in the joint predictor-criterion space. One of the best ways of

restructuring jobs in order to increase potential classification efficiency should be to reconstitute
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a total set of jobs into classification-efficient clusters. It is this last principle that is most directly

examined in the present research through the development of a classification-efficient method

of job clustering and use of a set of conditions to demonstrate the expected increase in MPP as

the number of job families increase.

C. Alternative Approaches for Improving PCE

There are many alternative approaches that could be employed to bring about

improvements in the selection and classification system of an organization such as the U.S.

Army. By far the largest improvements in personnel classification efficiency would come from

the substitution of FLS composites for the existing U.S. Army aptitude area composites.

However, there are a number of other promising changes that could provide appreciable amounts

of improvement in productivity that, for the most part, are additive to the gains due to the use

of FLS composites. Improvements could result from the creation and use of: a classification-

efficient (CE) test battery, more and better job families, better CE test composites as assignment

variables, and more effective assignment strategies.

1. Changing Test Battery Content

A set of test composites can provide no more PCE for a prescribed set of job families

than was provided in the test selection process that created the operational test battery. If it is

possible to change the content of the operational test battery, improvements in PCE could be

accomplished by selecting predictors that experts believe have a high degree of differential

validity (as contrasted with predictive validity) for inclusion in an experimental test pool. It

would then be possible to perform test selection employing indices that measure PCE to create

an operational battery with the best PCE.

Recently, Johnson, Zeidner, and Scholarios (1990) completed a study that compared

various test selection indices in terms of their potential for maximizing PCE. From an

experimental test pool of 29 tests (including the 9 ASVAB tests), tests were selected to create

FLS composites of five or ten tests. These test batteries were then used in the simulated

assignment of individuals to jobs and MPP was calculated to assess the efficiency of that

assignment. Two of the indices used to select tests were Horst's differential index, Id, and
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Max-PSE which is a measure of selection efficiency. Use of the classification-efficient index,

Hd, resulted in gains in MPP as great as 22% over the use of the selection-efficient index, Max-

PSE. Additionally, this study showed gains in MPP of approximately 25% when the number

of FLS predictors was increased from five to ten. Overall, it was concluded that classification-

efficient methods of test selection lead to greater MPP in an assigned group than a selection-

efficient method.

2. Restructuring Jobs into New Job Families

If an operational test battery were fixed and could not be readily changed, PCE could still

be improved by efficiently increasing the number of job families with their associated predictor

composites. It is estimated that an increase in the number of composites and associated job

families to somewhere between 20 and 40 would most likely provide the maximum efficiency

for Army jobs. In the present research, classification-efficient job families will be created using

Hd that can be compared to job families formed using a selection-efficient method. These

empirical methods of forming job families will also be compared to the job family structures

currently used by the U.S. Army.

3. Changing Assignment Variables

The most important change in assignment variables that could be adopted by the Army

would be the conversion of the existing aptitude area test composites into least squares estimates

based on all tests in the classification battery, i.e., using predicted performance as the basis of

assignment rather than test composites. These full least squares (FLS) composites are optimal

for both selection and classification of personnel.

The use of numerous test composites would require the Army to record many scores on

each soldier's official record. One way to use many assignment composites would be to install

a two-tiered system in which the large number of FLS composites are used to make

recommendations regarding assignment, while a much smaller number of factor scores are used

for counseling. These factor scores would also be used as a basis for setting minimum cutting

scores for entry into special training programs, as a career planning aid to be available to the

soldier, and for other personnel management purposes, such as retention and promotion. A

study is currently underway to assess the amount of PCE that can be provided by a small

10



number of factor scores. This study is designed to compare the PCE prcvided by a number of

different types of assignment composites.

4. Changing Selection-Assignment Stategies

Improvements in PCE could be made through the consideration of different

selection/assignment strategies. One simple selection/assignment method would be a two-stage

strategy in which applicants are selected based on a single predictor and then assigned to specific

jobs using multiple assignment variables. However, a possibly more efficient

selection/assignment strategy for practical implementation would be a simultaneous selection and

optimal classification system called the multidimensional screening (MDS) procedure (Johnson

& Zeidner, 1990, 1991).

The MDS procedure is best understood in the context of Brogden's (1959) model where

each predictor is an FLS composite yielding a score that divides into a general (g) and a unique

(u) component. Brogden (1959) discussed an assignment strategy in which applicants are

simultaneously selected and classified into jobs using only the unique components, and he states

that "removal of the common component will be shown to have no effect on the classification

of (individuals] or on the allocation average" (p. 184). MDS is a modification of Brogden's

model to reflect a simultaneous strategy in which selection and classification is accomplished

using a separate FLS composite for each job that incorporates both the g and u components.

This strategy is an important improvement in Brogden's model because it allows for a larger

gain in mean predicted performance due to selection when g constitutes a large part of each

score (as is usually the case).

Whetzel (1991) completed a simulation study that compared three methods of

selection/assignment: selection on g and then assignment on the FLS composite (two-stage

strategy); selection and assignment based only on g; and simultaneously selecting and assigning

on FLS (multidimensional screening). Whetzel (1991) found that MDS was far superior in terms

of gain in MPP compared to selecting and assigning solely on g. MDS was also statistically

greater in terms of gains in MPP than selection on g and assigning on FLS, but the gains were

more modest. It was concluded from this study that the largest and most dramatic increase in

MPP comes from the use of FLS composites in a two-stage selection/classification process. A
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smaller, but still worthwhile, improvement results from the integration of selection and

classification procedures using the MDS algorithm.

5. Changing Criterion Variables and Increasing Validity Information

Finally, all approaches relating to a redesign of the classification system could be made

more effectively, providing greater classification efficiency, if: (1) the criterion variables were

more reliable and more accurate measures of the value of the individual in the accomplishment

of the mission; and (2) the analysis samples on which validity data are computed were larger.

Our knowledge of the effect of sample size on the stability of regression weights is extensive.

However, this knowledge does not translate to predicting the effect of analysis sample size on

MPP after optimal assignment of a pool of candidates to jobs. While we do not in this study

directly measure the impact of criterion quality and the size of analysis samples on MPP, further

insight on this issue can be obtained from this study.

D. Current Trends

1. Validity Generalization

In recent decades, there has been a steady decline in research and application pertaining

to classification. The most popular trend in personnel research in recent decades has been the

validity generalization movement (Schmidt & Hunter, 1977). The research that has come out

of VG has led to the conclusion that there is an all-pervasive general cognitive ability (g)

component that is the best measure for predicting job performance. Although general cognitive

ability contributes substantially to efficient selection, it leaves little room for classification and

has led to a general pessimism on the part of many researchers about the future usefulness of

classification batteries. This pessimism is unfounded, however, and is due mainly to

misunderstandings about classification. Differential assignment theory has been introduced to

dispel some of these misunderstandings and to demonstrate the tremendously important role that

classification can play in the overall utility of a complete personnel utilization system.

There is a general resistance to DAT mainly because there is a tendency to confuse it

with what is often called either "specific aptitude theory" or "differential aptitude theory" (see

Schmidt, Hunter, & Larson, 1988). Specific aptitude theory had its origins with the work of
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researchers such as Guilford (1956, 1957, 1959), Hull (1928), and Thurstone (1938). The idea

behind specific aptitude theory is that there are certain aptitudes that should be relevant for

predicting performance on certain jobs. Thus, a math test should predict work requiring

numerical skills while a verbal test should predict work requiring verbal skills. Under ideal

circumstances, each test would measure a separate aptitude, thus mandating low intercorrelations

among the tests. A composite of these tests could be constructed through the use of multiple

regression in order to predict success in the job or job family for which it was constructed. In

1928, Clark Hull published a book on aptitude testing in which he stated his differential aptitude

hypothesis. This hypothesis asserts that a tailored composite of specific tests could make an

incremental contribution to the prediction of performance over and above the contribution of

general cognitive ability. Through the use of factor analysis, a great deal of research was done

to identify specific aptitudes that represented the structure of human abilities. These specific

abilities were needed in order to build tailored aptitude test batteries consistent with specific

aptitude theory. Thurstone's (1938) studies resulted in the identification of seven factors which

he termed the "primary mental abilities". Guilford (1956, 1957, 1959) presented a scheme to

classify known factors of intelligent behavior that resulted in a theoretical representation of the

structure of the intellect composed of 120 different factors.

DAT is different from specific aptitude theory in two major ways. First, in constructing

a classification test battery, emphasis is placed on accentuating the differences between predicted

measures of success. Horst's (1954) differential validity index facilitates the selection of

predictors for inclusion in such a classification-efficient test battery. The goal is to have a set

of predictors that capitalizes on any and all inter- and intra-individual ability differences. It is

not necessary for each predictor to represent a different aptitude, and it is not necessary that the

predictors have low intercorrelations. Brogden (1951, 1959) demonstrated that high predictor

intercorrelations do not reduce classification efficiency as much as previously thought.

The second major way that DAT is different from specific aptitude theory is that in order

for differential assignment to be maximally efficient, full least square regression equations (FLS)

should be used as the best estimate of actual criterion performance. This is contrary to specific

aptitude theory which has been implemented through the use of unit-weighted composites

consisting of a reduced number of tests than are in the total battery. Allocation to jobs based
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upon a full least square regression equation for the entire battery provides for maximally

efficient assignment according to differential assignment theory.

Another misunderstanding about classification research is the belief that predictive

validity can be used to evaluate the effectiveness of classification. Some recent articles

discussing classification effects in terms of predictive validity include Hunter (1986), Schmidt,

Hunter, and Larson (1988), and Thorndike (1986). A more appropriate figure of merit for

evaluating classification effects is mean predicted performance (MPP). When dealing with a

simple univariate selection model, the validity coefficient is directly proportional to MPP when

the selection ratio is held constant and the relatively simple optimal selection algorithm is used

(i.e., the rank ordering of applicants on predicted performance and selection in order from the

top down). However, when dealing with a more complicated multivariate model required for

classification there are no simple analytical methods for computing MPP. In fact, the only

practical solution is to use real or synthetic data as input into simulations of personnel utilization

strategies. MPP can then be calculated from the simulation to evaluate potential classification

efficiency (PCE) of various personnel assignment strategies. What may not be obvious is that

predictive validity is relegated by the underlying mathematics to what in many cases may be a

min!r role in achieving an increase in classification efficiency. Under certain conditions, one

set of test composites having a smaller average predictive validity than another could actually

possess greater classification efficiency (Zeidner & Johnson, 1989b, 1991b).

The trend in recent times is to devote all attention to increasing the predictive validity

of test batteries without concern for differential validity needed for efficient classification. This

trend is due primarily to the emphasis that VG places on a dominant g factor. The development

of aptitude test batteries in the U.S. Army over the years has certainly been affected by this

trend. One of the Army's first set of aptitude tests was the Army Classification Battery (ACB).

As the name suggests, there was considerable emphasis placed on the ACB's ability to classify

individuals into jobs efficiently during the first fifteen years of its use (Zeidner, 1987).

Unpublished Army studies show a generally declining trend in the amount of classification

efficiency present with each change of ACB content during the period that the ACB was being

transitioned into the current ASVAB. Furthermore, the use of unit-weighted aptitude area

composites further erodes the classification potential of the ASVAB. This trend has continued
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with the experimental pool of predictors developed recently for the U.S. Army's Project A.

These predictors were assembled with the goal of increasing predictive validity, rather than

differential validity (McHenry, Hough, Toquam, Hanson, & Ashworth, 1990).

2. Decreasing the Number of Job Families

Another disturbing trend in recent times is the tendency for researchers to favor

decreasing the number of job families in operational systems. This trend, once again, is caused

primarily by a focus only on selection efficiency and increasing support for general cognitive

ability as sufficient for predicting performance in all jobs. The result of considering the g factor

as the only significant predictor of performance in all jobs is that the differences between jobs

are diminished and the need for numerous job families decreases.

The Army currently has nine job families, the Navy has 11 families, the Air Force has

four families, and the Marines have six. Other large organizations have similarly fairly small

numbers of job families. For example, the Office of Personnel Management (OPM) has recently

found seven job families to be representative of the professional and administrative jobs in the

federal government (Rheinstein, McCauley, & O'Leary, 1989b). These job families were used

in the development of the new Administrative Careers with America examination. The

Department of Labor, based on the research of Hunter (1983), is using five job families

(clustered by job complexity, rather than by job similarity) to represent all 12,000 jobs in the

Dictionary of Occupational Titles.

Thus, there is a tendency for job family systems developed for large organizations in

recent times to include, on the average, approximately four to seven job families. The Army

and the Navy are the exceptions in that they are still using 9 and 11 job families, respectively.

However, there have recently been serious suggestions that the Army decrease their number of

job families to four (McLaughlin, Rossmeissl, Wise, Brandt, & Wang, 1984).

The Air Force currently has four job families that match the number of strong group

factors in the ASVAB. Some believe that basing the number of job families on the number of

strong factors in the test battery is the most appropriate method. One of the main purposes of

the present research is to demonstrate that it would be a serious mistake for the U.S. Army to

decrease their number of job families to four. Decreasing the number of Army job families

would result in a further erosion of any classification potential in the Army's
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selection/assignment system. This research is designed to demonstrate that actually increasing

the number of job families beyond the current nine could begin progress towards a more optimal

selection/assignment system for the U.S. Army.

E. Research Approach

This research utilizes a model sampling approach combined with a computer simulation

of the selection and classification process. Model sampling involves the generation of synthetic

entities that have specified statistical characteristics in common with empirical random samples

drawn from the empirical sample. In this approach, actual empirical databases with covariances

between predictors and criteria provide the parameter values that define the designated

population. These parameters form the basis for the generation of synthetic entities with test

scores that have the same expected means and covariances as the designated population. The

parameters of the synthetic samples differ from those of the designated population by an amount

of sampling error that is related to sample size as though they were empirical samples. This

model sampling approach has many advantages over simply using existing empirical database

scores in the simulations.

Model sampling provides increased flexibility in that samples of any number and size can

be generated for any universe, including a current or future youth population, if that universe

can be defined by both the covariances among the relevant predictor variables and the validities

of these variables against all criterion components. It could be argued that the shape of a score

distribution would be more realistic for a simulation using empirical scores rather than synthetic

scores generated to have a normal distribution. However, with a little extra effort, synthetic

scores can be generated to reflect any degree of censoring that is desired, and has the added

advantage that distributions can be produced that are closer to a distribution of a future

population than is provided by the detailed shape of the distributions of the past years. Finally,

model sampling allows the evaluation of conditions which could affect the system but are not

available in terms of actual empirical data.

For the present research, the primary advantage of the model sampling approach is that

a cross-validation design can be utilized that provides a rigorous methodological investigation
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of the various experimental conditions in this experiment. For one set of conditions in this

research, model sampling allows the generation of an analysis sample independent of the

designated population for use in job clustering and definition of assignment variables. For all

conditions, the model sampling approach allows the generation of 20 independent cross-samples

that vary in size depending upon the demands of the design. Thus, by using model sampling

techniques it is possible to essentially replicate each condition in this experiment 20 times.

The model sampling technique used in this research is made more credible by the realism

of the designated population made possible by two empirical databases from the Army Selection

and Classification Project (Project A). The two parts of this research, Design A and Design B,

make use of the two databases differently. Design A is based upon the 18 jobs investigated in

the concurrent validation phase of Project A (Campbell, 1990). Although data were collected

for only 18 jobs in this phase, validation data on 20 new experimental tests with carefully

designed performance criteria is available in this database.

For Design A, the same 18 jobs also were extracted from the second dat2ase from the

early stages of Project A called, for the purposes of this research, the "McLaughlin" database

(McLaughlin, Rossmeissl, Wise, Brandt, & Wang, 1984). The "McLaughlin" database contains

validation data for the ASVAB and the Skill Qualification Test (SQT) and training score criteria.

The "McLaughlin" database is utilized in Design A to compare the use of the less appropriate

SQT criterion (constructed for use as a training diagnostic tool) with the specially developed

Core Technical Proficiency (CTP) criterion developed in the concurrent validation phase of

Project A.

However, the "McLaughlin" database plays an even more important role for Design B.

The "McLaughlin" database contains validation data for over 98 jobs of which 60 jobs were

selected for this research. The availability of 60 jobs with validation data based on moderately

large sample sizes is very important to the operational implications of this research. It makes

it possible to compare much more substantial and realistic sets of operational and empirical job

families than is possible with the more limited set of jobs in Design A. Both databases will be

described in more detail in the next chapter.

In Design A, three primary areas relating to job structure are investigated. First, it is

expected that there will be a significant improvement in MPP as the number of job families to
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which individuals are classified increases. For Design A, the number of job families will

increase from 6 to 9 to 12. Second, it is expected that there will be significantly greater

improvement in MPP with jobs empirically clustered into job families specifically to maximize

classification efficiency compared with jobs empirically clustered into job families specifically

to maximize selection efficiency. Third, the empirical methods of job clustering developed here

are expected to result in significantly greater improvement in MPP than the operational job

families currently being used by the U.S. Army.

A number of secondary areas also are investigated in Design A. In Design A, it is

possible to examine whether the efficiency of classification varies with the number of job

families according to a negatively accelerated function. This idea was originally proposed by

Brogden (1959). It is expected that the increase in MPP from 6 to 9 job families will be greater

than the increase in MPP from 9 to 12 job families. In addition, Design A examines the effects

on classification efficiency of expanding the number of predictors from nine ASVAB tests to

nine ASVAB tests plus 20 experimental predictors. It is expected that the expanded predictor

space will provide an improvement in MPP compared to the use of only the ASVAB. Design

A also contains a set of conditions to compare the use of FLS composites instead of aptitude area

composites for assignment. It is expected that the use of FLS composites will result in

significantly greater improvements in MPP than the current aptitude area assignment system.

Finally, in Design A, the effects on classification efficiency of using the SQT criterion instead

of the CTP criterion are investigated. It is expected that substituting the SQT criterion for the

CTP criterion will result in no differences in the conclusions reached about any of the primary

or secondary areas just discussed.

In Design B, it is important to demonstrate the job clustering methods with a large

number of jobs. The other expectations in Design B are similar to Design A in that (1) the

magnitude of the MPP scores are expected to increase as the number of job families increase,

and (2) the empirical methods of forming job families will be compared to the operational job

families currently used by the Army. In Design B, however, the number of job families will

be increased from 9 to 16 to 23. This increase provides a further opportunity to examine

Brogden's proposal that the efficiency of classification varies with the number of job families
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according to a negatively accelerated function. Hopefully, some conclusions can be reached

about the efficiency of utilizing as many as 23 different job families from Design B.
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II. RESEARCH METHOD

A. Data Description and Corrections

Two empirical databases will be utilized in the present research. Both of these databases

were part of the Army Selection and Classification Project (Project A). The first data set used

in this research comes from the Project A effort to generate new predictor and criterion

measures to enhance the selection and classification system for all entry-level positions in the

United States Army. In a concurrent validation phase of Project A, the ASVAB along with new

predictor and criterion measures were administered to incumbents who entered the Army in 1983

or 1984. This data set forms the first database used in the present research and will be calied

simply the "Project A" data set.

The second data set comes from the early stages of Project A which concentrated on

validating the current ASVAB aptitude area composites and considering alternative composites

of the ASVAB. For this purpose, available computer records containing ASVAB predictor

scores along with criterion measures consisting of training school grades and the Skill

Qualification Test (SQT) were drawn for people who joined the Army in 1981 and 1982. The

analysis of these data are reported in McLaughlin, Rossmeissl, Wise, Brandt, and Wang (1984).

These data form the second database used in the present rescarch and will be called the

"McLaughlin" data bet.

1. Job Sample

The Project A concurrent validation data set contained validation data for 19 Military

Occupational Specialties (MOS). There was only one modification made to this database for the

present study. One of the MOS, 51B C nentry and Masonry Specialist, was not used in this

study because it had a very small sampie size (n=69) compared to the other MOS in the

database, and it resulted in an unstable factor structure when its use was attempted in previous

research (Whetzel, 1991). The "McLaughlin" data set contained validation data for 98 MOS.

Of these 98 MOS, the same 18 jobs contained in the Project A concurrent validation sample
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were selected for the first part of this study (Design A). An additional 42 MOS forming a total

set of 60 jobs were selected for the second part of this study (Design B). The total number of

jobs was set at 60 because it was originally estimated that the largest number of job families that

would be created would be approximately 30 job families. A reasonable number of jobs was

determined to be at least twice the number of job families.

The additional 42 jobs selected to compose the "McLaughlin" database for Design B were

chosen out of the possible 98 available MOS in a two stage selection process. In the first stage,

all jobs with a sample size greater than 200 were selected. Including the original 18 Project A

MOS, this process identified 50 jobs. Two jobs were eliminated because they did not have

reliability information. Five jobs were eliminated because they shared obvious similarities to

jobs already included in the database (e.g., three personnel jobs and two helicopter repair jobs).

Thus, at the end of the first stage there were 43 candidate jobs. In the second stage, the

remaining jobs were reviewed as candidates to complete the set of 60 jobs. The following

criteria were used in selection: (1) desire to include jobs that were in as many of the different

Career Management Fields (CMF) as possible; (2) availability of reliability data; and (3) sample

sizes close to or greater than 100. Using these criteria, 17 additional jobs were selected to

complete the set of 60 jobs.

Appendix A (Table A-1) lists the 18 jobs contained in the Project A concurrent validation

data set along with the sample sizes for these 18 jobs for both the Project A data set and the

"McLaughlin" data set. Note that the average sample size per job for the Project A data set was

388 and the average sample size per job for the "McLaughlin" data set is 2,370. Appendix A

(Table A-2) lists the total set of 60 jobs and their sample sizes for the "McLaughlin" data set.

The average sample size across these 60 jobs is 1,002.

2. Predictors and Criteria

For this study, the Project A concurrent validation predictors included the nine ASVAB

tests plus an expanded set of 20 additional experimental predictors. These new predictors were

designed to capture cognitive and noncognitive abilities not covered by the ASVAB: spatial

visualization and orientation, perception and psychomotor skills, temperament/personality,

vocational interest, and job orientation. Appendix B (Table B-i) lists the ASVAB tests and the
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20 additional predictors along with their reliabilities. The "McLaughlin" predictors included

only the ASVAB tests.

The criterion measures used in this study were Core Technical Proficiency (CTP) for the

Project A concurrent validation data set and the Skill Qualification Test (SQT) for the

"McLaughlin" data set. Three jobs that matched the Project A jobs in the "McLaughlin" data

set lacked SQT scores, so end-of-course training scores were substituted for these jobs.

The CTP criterion was chosen for this study instead of one or more of the other four

criterion components developed as part of the Project A concurrent validation effort because it

represents MOS-specific performance. The CTP criterion was designed to measure the

proficiency with which the soldier performs the tasks that are "central" to the MOS (Campbell,

Ford, Rumsey, Pulakos, Borman, Felker, DeVera, & Riegelhaupt, 1990). It is composed of

both hands-on and paper-and-pencil measures of MOS-specific task proficiency. The MOS-

specific aspect of the CTP criterion is important because it provides for greater

multidimensionality in the joint predictor-criterion space. It is desirable to have a criterion that

differentiates between jobs to demonstrate classification effects. Evidence from previous

research supports the notion that CTP is better for differentiating between jobs. Wise,

Campbell, and Peterson (1987) reported that the optimal component for differentiating between

jobs was CTP, with the four other components showing little added value for this purpose. In

addition, in a preliminary factor analysis done as part of the Whetzel (1991) study, it was found

that when all five criteria were used in factoring the predictor-criterion covariances, a strong

simple structure did not emerge. In other words, jobs did not load highly on one factor and near

zero (or at least much lower) on all other factors, hence the loadings did not show distinct

differentiation of jobs on the factors. There was much better differentiation found when the CTP

criterion was used alone. The reliability of the CTP criterion used for the present study was .85

(Zeidner, 1987).

The SQT criterion measure available in the "McLaughlin" data set also represents MOS-

specific performance. SQTs have been administered by the Army since 1977 to assess soldiers'

qualifications for promotion and to evaluate the overall effectiveness of Army training programs.

Each year a separate SQT is constructed for each MOS and skill level within that MOS. SQTs

may sample from 12 to 36 tasks, and soldiers are allowed to prepare in advance for the tasks
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to be tested. A test may consist of both hands-on and paper-and-pencil job knowledge items.

However, for the period of data covered in the McLaughlin et al. (1984) analyses, only paper-

and-pencil job knowledge items were available.

The "McLaughlin" database also contained end-of-course training scores. These are tests

that are developed at the schools for the purpose of testing whether the students have learned

what had been taught. McLaughlin et al. (1984) used a combination of the two criterion

measures for several of their analyses. For the present study, it was decided that the SQT

criterion measure would be preferable to a combined criterion or the end-of-course training

scores alone. There were two reasons for this decision. First, although both the SQT measures

and the end-of-course measures are essentially criterion-referenced tests, the SQT measures

appeared from McLaughlin et al. (1984) to be better psychometrically yielding a higher average

validity. Second, after some investigation it was discovered that it was possible to obtain fairly

accurate estimates of reliability for the SQT criterion but not for the end-of-course training

criterion. Reliability estimates were needed for all of the criterion measures used in this study

so that corrections for criterion attenuation could be made.

These reliability estimates were obtained by contacting the U.S. Army Training Support

Center in Fort Eustis, Virginia. It was discovered that, since 1987, the U.S. Army has been

collecting extensive reliability information for the SQTs. For the present study, Cronbach alpha

reliability estimates were obtained for the SQTs corresponding to each of the 60 MOS for the

years 1987, 1988 and 1989. There were only 10 MOS without reliability estimates for all three

years. Appendix C contains the reliability information across all three years for the 60 jobs in

the "McLaughlin" data set.

These Cronbach alpha reliability estimates proved to be the best information available

about SQT reliability so it was decided to correct each MOS in the "McLaughlin" database for

criterion attenuation based upon the average reliability for that MOS across the three years.

Having three years of data should provide a consistent enough estimate of reliability to

compensate for the fact that SQTs are changed from year to year with the actual data being used

in this study from 1981 and 1982. It is encouraging to note that the average reliabilities across

MOS were consistent across the years. The average alphas for 1987, 1988, and 1989 were .83

(n=2688), .83 (n=2893), and .81 (n=3018), respectively.
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As mentioned, there were three MOS (16S, 76Y, and 91A) in which end-of-course

training data was used instead of SQTs. Obtaining reliability data for these jobs presented an

additional problem because the training schools for these MOS indicated that there was no

reliability data available. Therefore, it was decided that the SQT reliability data would have to

be used as a best estimate of training reliability. However, from the McLaughlin et al. (1984)

report it was apparent that the end-of-course criterion data were probably much less reliable than

the SQT criterion data. The average adjusted training criterion validity in McLaughlin et al.

(1984) was .40, while the average adjusted SQT validity was .46. In order to remedy this

problem, an adjustment was made to the reliability estimates for MOS 16S, 76Y, and 91A based

on a ratio of how much lower the reliability of the training data would have to be to obtain a

validity estimate .06 points lower. Without this adjustment, the reliability of the criterion for

the MOS 16S, 76Y and 91A would be greater than their corresponding validities indicate so that

the subsequent correction of these validity values for criterion unreliability would be less than

it should be. Thus, this problem would introduce an inconsistency between these three MOS

and the other MOS. This adjustment resulted in reliability estimates of .58, .66, and .62 for

MOS 16S, 76Y, and 91A, respectively.

3. Data Corrections

Both of the Project A concurrent validation and "McLaughlin" data sets must be

corrected for restriction in range and criterion attenuation. For the Project A data set, all

corrections were done as part of an earlier study for the Institute for Defense Anaiyses (Johnson,

Zeidner, & Scholarios, 1990). These corrections will be described below. The corrections to

the "McLaughlin" data set were done for the purposes of the present research.

One other set of corrections will also be described in this section that were discovered

to be necessary during the research done by Whetzel (1991). For the Project A data, when the

covariances among the predicted performance scores, C., were factor analyzed it was discovered

that three of the eigenvalues of C, were negative. This indicated that the V matrix (validity

matrix) used for these calculations was not positive semi-definite. This problem can arise from

computing validities against the different job criteria on separate samples of individuals, as

contrasted with the ideal research situation in which all validities are computed on the same set

of individuals.
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a. Corrections for Restriction in Range

A matrix of ASVAB (form 8) intercorrelations for a national sample of American 18-23

year olds was used as the "1980 Reference Youth Population" (Mitchell & Hanser, 1984). The

availability of the ASVAB youth population intercorrelation matrix enabled the nine ASVAB

tests to be treated as "explicit" predictor variables, i.e., variables drawn from an unrestricted

population (Appendix D, Table D-1 contains the 1980 youth population intercorrelation matrix).

For the Project A concurrent validation data, the 20 experimental predictors were treated as

"implicit" predictor variables since the degree of their restriction was determined entirely as a

function of their correlation with the explicit variables that are directly restricted by the selection

process. The correction procedure is based on Lawley's (1943) assumption that the regression

of the implicit predictors on the explicit predictors is linear and that the covariances of the

restricted variables exhibit homoscedasticity. Gulliksen's formulae (1950, p.165, numbers 37

and 42) were applied to the youth population covariance matrix for the ASVAB tests (explicit

variables) and the covariance matrix for the 20 Project A predictors (implicit variables) for the

aggregate of the 18 MOS. The result was a corrected variance-covariance matrix that was then

easily converted into correlation coefficients forming the corrected intercorrelation matrix (R.)

of 29 predictors (see Appendix D, Table D-2).

The same Gulliksen formulae were then used to correct the validities for implicit

restriction in range effects on the criterion in Project A. In this case, all predictors were treated

as explicit variables and only the criterion was implicit. Once again it was then an easy

procedure to convert the covariance matrix for the unrestricted predictors and the implicitly

restricted criterion into a matrix of unrestricted (population) validity coefficients for each MOS

(V). For the "McLaughlin" data set, the correction for restriction in range involved only this

second procedure. In the "McLaughlin" data set, there were only the nine ASVAB tests as

predictors and the youth population intercorrelation matrix among the tests formed the R, matrix.

The computation of the V matrix (of correlation coefficients) came directly from the covariance

matrix for the population predictors and criterion.

b. Corrections for Criterion Unreliability

The validity matrices for both data sets were then further corrected for criterion

unreliability. These corrections were accomplished using the general formula with the validity

25



coefficients in the numerator and the square root of the respective component reliabilities in the

denominator. For the Project A concurrent validation data set, a criterion reliability of .85 was

used in the corrections for the CTP criterion (Zeidner, 1987). As described earlier, for the

"McLaughlin" criterion, each MOS was corrected separately based on the reliabilities given in

Appendix C. Appendix D (Tables D-3 and D-4) contain the corrected validity matrices for the

Project A concurrent validation and "McLaughlin" data sets.

c, The Positive Semi-definite Condition

It is easily demonstrated that any matrix which is a product of real numbers premultiplied

by the transpose of that matrix can have no negative eigenvalues (see Appendix E). This

condition of having all eigenvalues equal to either positive real numbers or zero is referred to

as being positive semi-definite. The 29 by 29 matrix of correlation coefficients among the

Project A concurrent study predictors remained positive semi-definite after corrections for

restriction in range and criterion unreliability. No adjustment was required for the 29 by 29 R

matrix used in the model sampling experiment reported by Johnson, Zeidner, and Scholarios

(1990). The covariances among the predicted performance variables, Cp, were not utilized in

the Johnson, Zeidner, and Scholarios (1990) study and Cp was not tested to see if it was positive

semi-definite.

However, the Whetzel (1991) study required the use of a factor solution of the matrix

Cp, defined as CP = V R " V'. Whetzel (1991) found that C,, computed in this manner did not

meet the positive semi-definite condition. Since it was apparent from previous work by Johnson,

Zeidner, and Scholarios (1990) that R, was positive semi-definite, the failure of C to meet this

condition had to be due to the matrix V; apparently it would not be possible to obtain this

particular V matrix from the analysis of a single sample of either empirical or synthetic predictor

and criterion scores. A very small adjustment was all that was required to provide a V matrix

that results in a CP matrix that is positive semi-definite. Appendix E details the steps taken to

remove the effects of negative roots on V.

The corrected R, and V matrices for the 60 job samples from the "McLaughlin" data did

not have the problem of negative eigenvalues. It was found that V R V', where V is a 18 by

9 validity matrix and P is a 9 by 9 matrix of correlation coefficients among the ASVAB tests,

has 9 positive eigenvalues and all other eigenvalues equal to zero (i.e., with no negative roots).
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Thus, V R' V' is positive semi-definite, and both R, and V are shown to result from data that

are consistent within the predictors and across the predictor and criterion variable sets.

B. Research Design

1. Cross-Validation Design

The model sampling paradigm allowed the construction of a carefully controlled, cross-

validation design for this research. Figure 1 is helpful in understanding this design feature. The

concept from which the cross-validation model sampling design is derived is based on the

assumption that the empirical data (after corrections for criterion unreliability and restriction in

range) provide a reasonable estimate of the population intercorrelations and validity coefficients

used in this research. This design feature was implemented differently for Design A and Design

B of this research.

For Design A, the generation of entity samples using parameters of this designated

population resulted in: (1) an analysis sample and (2) cross-validation samples (see Figure 1).

The analysis sample was used for job clustering and for the computation of weights to be applied

to predictors in order to form composites used as assignment variables. The analysis sample was

generated from random numbers that were transformed to yield test scores in independent job

samples with the same sample sizes and expected covariance values among predictors and

criterion as the parameters of the designated population. The algorithm for the generation of

the analysis sample for Design A is given in Appendix F along with the analysis sample

predictor intercorrelations (Table F-2) and the analysis sample validity coefficients (Table F-3).

There were 20 cross-validation samples generated from random numbers for Design A with

sample sizes of 264 entities and expected covariances equivalent to the covariances in the

designated population (generation of the cross-samples is described in detail in the procedure

section). Weights computed from the analysis sample are applied to the test scores of the

independent cross-validation samples to compute assignment variable scores.

From Figure 1, note also that there is a third independent source used for evaluation of

the assignment process. The computation of the weights to be used for the evaluation of the

assignment (to compute MPP) come directly from the parameters of the designated population.
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FIGURE 1: Typical Model Sampling Paradigm
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'Job validation sample sizes equal to those used in Project A first-term
concurrent validation study.

2Evaluation weights computed from Project A empirical sample designated
as the population.

3Sample size of assigned entities number from 200-300; in the aggregate,
N numbers in the thousands for each strategy.

'Predicted performance is computed using the same evaluation variable
and same weights for each job across all experimental conditions.

Source: Johnson, Zeidner, and Scholarios (1990)

28



This cross-validation design controls two distinct sources of correlated error. A

traditional source of error would occur if the validities and correlation matrices used to obtain

assignment weights were based on the same sample as those used in the simulations. This

traditional source of error was controlled in this experiment by having the analysis sample for

computing the assignment weights independent of the 20 cross samples. A second source of

error would occur if the same weights used for assigning entities to jobs were also used for

evaluating this assignment. The use of the same weights for assignment and evaluation treats

one type of error component as gains in true performance, thus overestimating predicted

performance. For Design A, this second source of error was controlled by computing the

assignment weights from the analysis sample and computing the evaluation weights directly from

the designated population.

For Design B, it was not practical to create an analysis sample in the same manner as

described in Appendix F because the entity sample and number of jobs was so large. For

Design B, the designated population values were used in the job clustering and in the

computation of assignment weights. There were 20 independent cross-validation samples that

were generated with sample sizes of 400. However, note that the weights used for evaluation

(from the designated population) are the same as the weights used for assignment. Thus, the

first source of error described above was controlled for but the second source of error was not.

Consequently, it is expected that the MPP results from Design B would be to some degree

overestimates of what MPP would be if all sources of error were controlled.

Although we do not have separate analysis and evaluation samples for Design B the use

of 20 independent cross-samples permits us to make the comparisons we include in Design B.

All contrasts in which the correlated error between assignment and analysis variable would bias

the results have been included only in Design A where this type of correlated error has been

completely eliminated. We believe that the levels of the independent variables contrasted in

Design B are not seriously affected by the degree and type of correlated error remaining after

the traditional "back validity" type of inflation has been eliminated.

A model sampling study designed to determine the effect of various sized analysis

samples have on MPP after assignment has been initiated by the first two authors of this report.

This study will contrast the effect on MPP of constructing the analysis of validity (job) samples

29



ranging from half the size of those in the concurrent study of Project A to those several times

this large. Meanwhile, the results of this study can be compared with those of Whetzel (1991)

in which the analysis sample was, by implication, infinitely large.

2. Repeated Measures Design

Another special design feature used in this research is a repeated measures design. The

repeated measures design chosen for this research is one in which each of the 20 cross-samples

of "individuals" was exposed to all treatment conditions. This design helps to control the error

variance between entities and helps to limit the number of entities that must be generated for

each condition.

There are many common disadvantages associated with using a repeated measures design.

However, most of these are irrelevant in the present study because this is a model sampling

experiment. For example, with repeated measures it is commonly necessary to devise elaborate

randomized block designs to ensure that the order of treatments do not cause confounding due

to carry-over effects across conditions (e.g., from practice, fatigue, transfer of training). With

an artificially generated sample of test scores this disadvantage is not an issue.

Another disadvantage often cited with repeated measures is that since the repeated

measures design allows a smaller sample size, it also decreases the accuracy of estimation

because the population of subjects is not as well represented as it would be if a larger sample

were used. However, in this research, because it is a model sampling experiment it was possible

to replicate the entire experiment 20 times thereby increasing the sample size. This replication

of all conditions 20 times forms the 20 cross-samples referred to throughout this discussion. It

is important that 20 cross-samples are used in this model sampling experiment instead of one

large cross-sample because optimal assignment with an extremely large sample size is

prohibitively expensive. Optimal assignment with smaller samples, 20 different times, is much

more practical and feasible.

3. Experimental Design

This research was designed to enable an analysis of the effects of restructuring job

families on classification efficiency by increasing the number of job families and by changing

the composition of the jobs within these families. Design A utilized the Project A concurrent
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validation data and the "McLaughlin" data for 18 jobs. Design B utilized only the

"McLaughlin" data for an expanded set of 60 jobs.

Design A can be divided into three components. The first component forms the basic

research design (Design A-I), with two other components forming baseline conditions based on

the operational job families currently used by the U.S. Army (Designs A-2 and A-3).

a. Design A-1: Basic Research Design

The basic research design consists of three independent variables that combine to form

18 experimental conditions, each one represented by a cell containing 20 cross-samples. These

three independent variables include a clustering methods factor, a number of job families factor,

and a data source factor.

The clustering methods factor consists of two methods, a method for clustering jobs to

maximize classification efficiency (CE method) and a method for clustering jobs to maximize

selection efficiency (SE method). The CE method involves minimizing the reduction in Horst's

(1954) differential index during each iteration in which jobs are formed into job families. The

SE method maximizes selection efficiency by ensuring that each job family has the maximum

obtainable average multiple correlation coefficient (R).

The number of job families factor consists of three levels (6, 9, and 12 families). The

number of job families at each of these three levels was designed to represent the current number

of operational job families, 3 less, and 3 more.

The data source variable represents three distinct sources of predictor and criterion data:

(a) the experimental Project A concurrent validation test battery (Exp. Batt.-A) with the CTP

criterion, (b) the standard ASVAB test battery from the Project A concurrent validation data set

(ASVAB-A) with the CTP criterion, and (c) the standard ASVAB test battery from the

"McLaughlin" data set (ASVAB-McL) with the SQT and training scores criteria. The

experimental Project A test battery consists of the ASVAB tests plus 20 experimental predictors.

This experimental test battery represents an expansion of multidimensionality in the predictor

space. The experimental battery is compared to the standard ASVAB test battery from Project

A to determine if expanding the predictor space results in greater MPP. The purpose of

including the "McLaughlin" data set is to be able to compare the SQT/training score criteria,

frequently criticized as inappropriate for personnel selection research, with the specially
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developed Project A CTP criterion. Since the ASVAB-A and the ASVAB-McL conditions are

both based on the same nine ASVAB tests it is possible to attribute differences in MPP between

these two conditions to the different criteria measures.

Table 1 shows how the three independent variables just described combine to form the

18 experimental conditions.

Table 1

Design A-i: Basic Research Design

Data Source

Clustering Job Exp. ASVAB-A ASVAB-McL
Methods Families Batt.-A

6

SE
9

12

6

CE
9

12

b, Design A-2: First Baseline Condition

The first baseline condition forms an additional design feature which is external to the

above factorial design. The current U.S. Army operational nine-job-families system constitutes

a baseline condition to be contrasted against a combined SE and CE, nine-job-families condition.

This comparison is done for two of the three levels of the data source factor (Exp. Batt.-A and

32



ASVAB-A). Thus, this design will have a 2 x 2 factorial structure which requires that two new

cells be created (20 cross-samples each) for the new conditic.a. The other two cells contain data

obtained from the basic research design discussed previously. Table 2 illustrates Design A-2.

Table 2

Design A-2: First Baseline Condition

Data Source

Clustering Methods Exp.Batt.-A ASVAB-A

Empirical (CE/SE)

Operational

The U.S. Army's job family system constitutes a baseline condition because it allows a

comparison of the Army's operational job family structure to the job family structures developed

empirically in this research. Note, however, that in this design all of the assignment variables

are FLS composites so, although the operational job families are duplicated, the operational

aptitude area composites are not. Table 3 shows the current U.S. Army operational job families

and indicates which job family each of the 18 jobs included in Design A belongs.

c. Design A-3: Second Baseline Condition

The second baseline condition consists of a single condition (one cell of 20 cross-

samples). In this cell, the existing U.S. Army aptitude area composites are used as assignment

variables instead of FLS composites. The nine operational job families are the targets of the

assignment. This condition, then, represents the current composite system that the Army uses

for selection and classification. Thus, it is possible to determine the magnitude of the effects

that use of the FLS composites have on MPP in comparison to the current composite system.

The aptitude area composites used in this research are given in Appendix B (Table B-2). It is

predicted that use of the aptitude area composites for assignment to the existing nine job families

will result in the lowest MPP in comparison to any of the Project A cels in the previous two

designs.
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Table 3

Design A MOS Grouped into Current Operational Job Families

Operational Job Families 18 Design A MOS

Clerical/Administrativc (CL) 71L Admin Specialist
76W Petroleum Supply Sp
76Y Unit Supply Sp

Combat (CO) 11B Infantryman
12B Combat Engineer
19E M49-M60 Armor Crmn

Electronics Repair (EL) 27E TOW/Dragon Repairer

Field Artillery (FA) 13B Cannon Crewman

General Maintenance (GM) 55B Ammunition Specialist

Mechanical Maintenance (MM) 63B Light Wheel Vehicle/
Power Gen Mechanic

67N Utility Helicopter Rep

Operators/Food (OF) 16S MANPADS Crewman
64C Motor Transport Op
94B Food Service Sp

Surveillance/Communication (SC) 31C Single Channel Radio
Operator

Skilled Technical (ST) 54E Nuclear, Biological,
and Chemical Sp

91A Medical Specialist
95B Military Police
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d. Design B

Design B contains two independent variables including a clustering methods factor and

a number of job families factor. In this case, the number of job families is expanded to 9, 16,

and 23. This is possible due to the use of the "McLaughlin" data with 60 jobs. Table 4

illustrates the conditions of Design B.

Table 4

Design B

Job Clustering Methods

Families Empirical Operational

9

16

23

The best empirical clustering method (CE or SE) is used to cluster the 60 jobs into 9,

16, and 23 job families. This clustering can then be compared to the current Army operational

job families. The 9 job family operational condition represents the same 9 Army job families

that were used in Design A. The 23 job family operational condition is based upon the Army's

Career Management Fields (CMF). The Army currently has 33 CMF categories in which jobs

are grouped, but for the present research it was only possible to include jobs from 23 of the

CMF with the job sample available in the "McLaughlin" database. The 16 job family

operational condition was developed for the purposes of this research as a combination of the

Army's nine job family aptitude areas and the CMF. In determining these 16 job families,

certain CMF categories were combined taking the 9 aptitude areas into account along with the

number of jobs in the CMF categories and the similarity of the jobs in the combining categories.

Thus, in several cases where a single job represented a CMF category, this job was grouped

with another CMF category that contained jobs in the same aptitude area. In addition, some

CMF categories were combined based on the similarities of the jobs and similarities of the

aptitude areas. For example, CMF 63 Mechanical Maintenance and CMF 67 Aircraft

Maintenance were combined because the jobs were all maintenance jobs that cut across the same
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two aptitude areas (general mechanical and mechanical maintenance). Tables 5, 6, and 7 present

the 60 jobs used in Design B grouped into the 9, 16, and 23 Army operational job families.

Each table contains columns of numbers following the jobs to indicate where the jobs are

grouped in the other job family structures.

C. Procedure

1. Job Clustering Procedures

Jobs were to be clustered into job families using two different clustering algorithms. One

clustering algorithm attempted to maximize classification efficiency by minimizing the reduction

in Horst's (1954) differential index during each iteration in which jobs are formed into job

families. The second algorithm attempted to maximize selection efficiency by ensuring that each

job family formed has the maximum obtainable average multiple correlation coefficient (R).

a. Clustering to Maximize Classification Efficiency (CE)

The algorithm that clusters jobs to maximize classification efficiency is called the

classification-efficient (CE) clustering method. This method follows a series of iterative steps

beginning with the input of an F matrix (see Appendix G for the classification-efficient

program). The F matrix represents a principle components solution from the factorization of

the joint predictor-criterion space, Cp, where CP is calculated by:
Cp = V (pW-1 V'

For Design A, the resulting F matrix is either an 18 by 18 matrix (for Experimental Battery-

Project A) or an 18 by 9 matrix (ASVAB-Project A and "McLaughlin"). In other words, 18

jobs (rows) by either 18 or 9 factors (columns). For Design B, the resulting F matrix is a 60

by 9 matrix (60 jobs with 9 factors).

The column means of this F matrix are then calculated and these column means are

subtracted from each corresponding column element of the F matrix to form a matrix of

deviations, G. Then, this G matrix is post-mulitiplied by its transpose, GG', and the diagonal

elements of the resulting matrix are extracted to form a vector D,. The weighted sum of all of

the elements of this D. vector are equal to an average Hd (Horst's differential index) across job

families. For the first iteration the weights to be applied to the D. vector will all be one, but
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Table 5

Design B MOS Grouped into 9 Operaional Job Families

9 16 23

:APTITUDE COMBINED

# MOS n :AREA(AA) CMF OHF

1. CLERICAL/ADMINISTRATIVE

71L Administrative Sp* 2824 1 9 13

714 Chapet Activities Sp 182 : 1 9 13

73C Finance Specialist 688 : 1 9 13

758 Personnet Admin Sp 1061 1 9 13

76C Eq Rec & Parts Sp 331: 1 11 15

76V Mat Stor & Hdtg Sp 216 1 11 15

76Y Unit Suppty Sp* 1149 1 11 15

76W Petroteum Suppty Sp* 664 1 11 16

71N Traffic Mgmt Coordinator 163 1 12 17

2. COMBAT

11B infantryman* 6355 : 2 1 1

11C Indirect Fire Infmn 1494 2 1 1

11H HV Anti-Armor Wpn Infn 979 : 2 1 1

128 Comboat Engineer* 3109 : 2 1 2

12F Engineer Tracked Crmn 151 : 2 1 2

190 Cavatry Scout 1249 2 1 5

19E K48-M60 Armor Crmn* 3297 : 2 1 5

3. ELECTRONICS REPAIR

27E TOW/Dragon Rep* 363 : 3 3 6

27F Vutcan Repairer 130 : 3 3 6

31M Muttichannet Com Eq Op 2482 : 3 4 7

31N Tacticat Ckt Con 189 : 3 4 7

31V Tac Com. Sysop/Nech 515 : 3 4 7

36C Wire Sys inst/Op 499 : 3 4 7

4. FIELD ARTILLERY

138 Cannon Crmn* 6575 : 4 2 3

13F Fire Support Sp 693 : 4 2 3

5. GENERAL MECHANICAL

62E HV Const Equip Rep 202 : 5 5 8

62F Lifting/Loading Eq Op 129 : 5 5 8

55B Ammunition Sp* 288 : 5 7 10

52D Power Generation Equip Rep 178 : 5 8 11

68J Aircraft FC Repairer 148 : 5 8 12

43E Parachute Rigger 100 : 5 11 15

57H Cargo Speciatist 272 : 5 12 17

(Continued)
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Table 5 (Continued)

9 16 23
:APTITUDE COMBINED

# NOS n :AREA(AA) CMF CMF

6. MECHANICAL MAINTENANCE

12C Bridge Crewnan 450 6 1 2

629 Construction Equip Rep 233 6 8 11

63B Lt Wh Veh/Pwr Gen Mech* 1495 : 6 8 11

63H Track Veh Repairer 335 : 6 8 11

63N M60AI/A3 Tank Sys Mech 286: 6 8 11
63W Wheet Veh Mechanic 180 6 8 11

67N Utility Net Repairer* 511 6 8 12

67V 08N/Scout Het Rep 294 6 8 12

68G Aircraft Structural Rep 125 : 6 8 12

7. OPERATORS/FOOD
15D Lance Crmb/NLRS Sgt 281 : 7 2 3
16S NANPADS Crema-mber* 596 : 7 2 4

64C Motor Transport Op* 3681 : 7 12 17

945 Food Service Spk 3943 7 15 20

8. SURVEI LLANCE/COMMUN ICAT ION

05C Radio TT Operator* 2393 8 4 7

72E Combat Telecom Center Op 569: 8 4 7
9. SKILLED TECHNICAL

13E Cannon Fire Direction Sp 627 : 9 2 3

82C Field Artillery Surveyor 434 : 9 2 3

54E NBC Specialist* 113 : 9 6 9

74D Computer/Tape Writer 132 : 9 10 14

74F Programmer/Anatyst 95 : 9 10 14

918 Medical Specialist* 783 : 9 13 18

91E Dental Specialist 203 : 9 13 18

91P X-Ray Specialist 159 : 9 13 18

929 Medical Lab Sp 310 : 9 13 18

93H Air Traffic Con Tower Op 114 : 9 14 19

959 Military Police* 4516 : 9 16 21

968 Intelligence Analyst 218 : 9 16 22

O5H Elec War/SIGINT INTER-INC 171 : 9 16 23

98C Etec War/SIGINT Analyst 186 : 9 16 23

* = NOS for Design A
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Table 6

Design B MOS Grouped into 16 Operational Job Families

9 16 23
:APTITUDE COMBINED

# MOS n :AREA(AA) C04F CMF

Job Family 1
11 Infantryman* 6355 : 2 1 1

11C Indirect Fire Infim 1494 : 2 1 1

11H HV Anti-Armor Wpn Infn 979 2 1 1

12B Combat Engineer* 3109 2 1 2

12F Engineer Tracked Crmn 151 2 1 2
190 Cavalry Scout 1249 : 2 1 5
19E M48-1M60 Armor Crlm* 3297 2 1 5
12C Bridge Crewinan 450 6 1 2

Job Family 2
130 Cannon Crmn* 6575: 4 2 3
13F Fire Support Sp 693: 4 2 3

150 Lance Crmb/MLRS Sgt 281 : 7 2 3

16S MANPADS Crewmember* 596 7 2 4
13E Cannon Fire Direction Sp 627 : 9 2 3
82C Field Artillery Surveyor 434 : 9 2 3

Job Family 3

27E TOW/Dragon Rep* 363 : 3 3 6
27F Vulcan Repairer 130 : 3 3 6

Job Family 4

31M Multichannel Corm Eq Op 2482 : 3 4 7
31N Tactical Ckt Con 189 : 3 4 7

31V Tac Comm Sysop/Mech 515 : 3 4 7

36C Wire Sys lnst/Op 499 : 3 4 7
05C Radio TT Operator* 2393 : 8 4 7

72E Combat Telecom Center Op 569 : 8 4 7
Job Family 5

62E HV Cost Equip Rep 202 : 5 5 8
62F Lifting/Loading Eq Op 129 : 5 5 8

Job Family 6

54E NBC SpeciaList* 113 : 9 6 9
Job Family 7

55B Ammunition Sp* 288: 7 10
Job Family 8

521) Power Generation Equip Rep 178 : 5 8 11

68J Aircraft FC Repairer 148 : 5 8 12
628 Construction Equip Rep 233 : 6 8 11

636 Lt Wh Veh/Pwr Gen Mech* 1495 : 6 8 11
63H Track Veh Repairer 335 : 6 8 11

63N M6OAI/A3 Tank Sys Mech 286 : 6 8 11

63W Wheel Veh Mechanic 180 : 6 8 11

67N Utility Het Repairer* 511 : 6 8 12

67V OBN/Scout Het Rep 294 : 6 8 12
68G Aircraft Structural Rep 125 : 6 8 12

..................................................... 39...C....t.n......
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Table 6 (Continued)

9 16 23

:APTITUDE COMBINED

# MOS n :AREA(AA) CNF CMF

Job Family 9

71L Administrative Sp* 2824 1 9 13

71M Chapel Activities Sp 182 1 9 13

73C Finance Specialist 688 1 9 13

75B Personnel Admin Sp 1061 1 9 13
Job Family 10

74D Computer/Tape Writer 132 9 10 14

74F Programer/Anatyst 95 : 9 10 14
Job Family 11

76C Eq Rec & Parts Sp 331: 1 11 15
76V Mat Stor & Hdtg Sp 216 : 1 11 15

76Y Unit Stpply Sp* 1149 : 1 11 15

76W Petroleum Supply Sp* 664 : 1 11 16

43E Parachute Rigger 100 : 5 11 15

Job Family 12
71N Traffic Ngmt Coordinator 163 : 1 12 17
57H Cargo Specialist 272 : 5 12 17
64C Motor Transport Op* 3681 7 12 17

Job Family 13
91B Medical SpeciaList* 783 : 9 13 18
91E Dental Specialist 203 : 9 13 18

91P X-Ray Specialist 159 : 9 13 18

929 Medical Lab Sp 310 : 9 13 18

Job Family 14

93H Air Traffic Con Tower Op 114 : 14 19

Job Family 15

948 Food Service Sp* 3943 : 15 20

Job Family 16

958 Military Police* 4516 : 9 16 21
968 Intelligence Analyst 218 : 9 16 22

OSH Etec War/SIGINT INTER IMC 171 : 9 16 23

98C Etec War/SIGINT Analyst 186 : 9 16 23

* = MOS for Design A
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Table 7

Design B MOS Grouped into 23 Operational Job Families

9 16 23

:APTITUDE COMBINED

# MOS n :AREA(AA) OMF CMF

1. INFANTRY (11)

11B Infantryman* 6355 : 2 1 1

11C Indirect Fire Infix 1494 2 1 1

11H HV Anti-Armor Upn Infn 979 : 2 1 1

2. COMBAT ENGINEERING (12)

128 Combat Engineer* 3109 : 2 1 2

12F Engineer Tracked Crmn 151 2 1 2

12C Bridge Crewman 450 6 1 2

3. FIELD ARTILLERY (13)

13B Cannon Crmn* 6575: 4 2 3
13F Fire Support Sp 693: 4 2 3
15D Lance Crmb/MLRS Sgt 281 : 7 2 3

13E Cannon Fire Direction Sp 627 : 9 2 3
82C Field ArtiLlery Surveyor 434 9 2 3

4. AIR DEFENSE ARTILLERY (16)

16S MANPADS Crewnember* 596 7 2 4
5. ARMOR (19)

190 Cavalry Scout 1249 : 2 1 5

19E 1448-M60 Armor Crmn* 3297 : 2 1 5

6. LAND COMBAT/AD SYS INTRM MAINTENANCE (27):

27E TOW/Dragon Rep* 363 : 3 3 6

27F VuLcan Repairer 130 : 3 3 6

7. SIGNAL OPERATIONS (31)

31N Muttichannet Com Eq Op 2482 : 3 4 7

31N Tactical Ckt Con 189 : 3 4 7

31V Tac Comm Sysop/Mech 515 : 3 4 7
36C Wire Sys lnst/Op 499 : 3 4 7

05C Radio TT Operator* 2393 : 8 4 7

72E Combat Telecom Center Op 569 : 8 4 7

8. GENERAL ENGINEERING (51)

62E HV Const Equip Rep 202 : 5 5 8

62F Lifting/Loading Eq Op 129 : 5 5 8

9. CHEMICAL (54)

54E NBC Specialist* 113 : 9 6 9

10. AMMUNITION (55)

55B Ammunition Sp* 288 5 7 10

11. MECHANICAL MAINTENANCE (63)
52D Power Generation Equip Rep 178 : 5 8 11

628 Construction Equip Rep 233 : 6 8 11
636 Lt Wh Veh/Pwr Gen Mech* 1495 : 6 8 11

63H Track Veh Repairer 335 : 6 8 11

63N M60AI/A3 Tank Sys Mech 286 : 6 8 11

63W Wheel Veh Mechanic 180 : 6 8 11

(Continued)
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Table 7 (Continued)

9 16 23
:APTITUDE COMBINED

# MOS n :AREA(AA) CMF CMF

------------------------------------------- ---------------------------

12. AIRCRAFT MAINTENANCE (67)

68J Aircraft FC Repairer 148 5 8 12

67N Utility Het Repairer* 511 6 8 12

67V 09N/Scout Het Rep 294: 6 8 12

68G Aircraft Structural Rep 125 6 8 12

13. ADMINISTRATION (71)

71L Administrative Sp* 2824 1 9 13

71H Chapel Activities Sp 182 1 9 13

73C Finance Specialist 688 : 1 9 13

758 Personnel Admin Sp 1061 1 9 13

14. AUTOMATIC DATA PROCESSING (74)

740 Computer/Tape Writer 132 : 9 10 14

74F Programmer/Analyst 95 9 10 14

15. SUPPLY AND SERVICE (76)

76C Eq Rec & Parts Sp 331: 1 11 15

76V Nat Stor & Hdtg Sp 216 1 11 15

76Y Unit Supply Sp* 1149 1 11 15

43E Parachute Rigger 100 5 11 15

16. PETROLEUM AND WATER (77)

76W1 Petroleum Supply Sp* 664 1 11 16

17. TRANSPORTATION (88)

71N Traffic Mgmt Coordinator 163 : 1 12 17

57H Cargo Specialist 272 5 12 17

64C Motor Transport Op* 3681 : 7 12 17

18. MEDICAL (91)

91B Medical Specialist* 783 : 9 13 18

91E Dental Specialist 203 : 9 13 18

91P X-Ray Specialist 159 : 9 13 18

928 Medical Lab Sp 310 : 9 13 18

19. AVIATION OPERATION

93H Air Traffic Con Tower Op 114 : 9 14 19

20. FOOD SERVICE (94)

949 Food Service sp* 3943 7 15 20

21. MILITARY POLICE (96)

95B Military Police* 4516 : 9 16 21

22. MILITARY INTELLIGENCE (96)

968 Intelligence Analyst 218 9 16 22

23. ELECTRONIC WARFARE/CRYPTOLOGIC OP (98)

05H Etec War/SIGINT INTERIMC 171 9 16 23

98C Etec War/SIGINT Analyst 186 9 16 23

* = NOS for Design A
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as jobs are formed into job families, the weights become equal to the number of jobs in each

developing job family. This process ensures that average 1d will always correspond to all of

the jobs in the evolving job families.

The next step in this algorithm utilizes the D, vector to form an A matrix. This A matrix

consists of the weighted sum of all possible combinations of the elements of the D. vector. Each

element of the A matrix is calculated using the following formula:

- n,(d) + n(d)

where,

d = an element of D.
n = number of jobs in the ith or jth job family

Thus, the A matrix is a m by m square matrix, where m is the number of job families.

Conceptually, the A matrix represents the contribution of the jobs in each pair of evolving job

families to H.

The next step in this algorithm utilizes the F matrix described previously to form a B

matrix. For each column of F, the ith and jth factor loadings are summed, weighted by Ai and

n, to form the weighted sums. These sums are divided by (Ai + n). The column mean is then

subtracted and each difference is squared. These calculations are repeated for each column of

F and all of these elements are summed and mulitiplied by (nk + n) to form the ith and jth

elements of the B matrix. This process is repeated for all possible combinations of elements in

the F matrix. The notation for these calculations can be represented as follows:

B = [(((n~fi + nf,)/(n. + ni))- c1) 2 +

(((nf, + q2)/(rk + n)) -C)2 +

... (((nk-f_. + njf,.)/(ni + n)- c.) 2](ni + n)

where,

f = an element of the F matrix
n = number of jobs in the ith or jth job family
c = column means from the F matrix
m = number of job families

Conceptually, the B matrix acts as a trial deviation matrix that indicates how much of a

reduction in Hd there is when any two job families for that iteration are combined.
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The final step in the algorithm is to subtract all of the elements in the B matrix from al!

of the elements in the A matrix (i.e., A - B) to form a D matrix. The smallest element in this

D matrix represents the two jobs (or job families) that when combined will minimize the

reduction in Id. Thus, the two job families corresponding to the smallest value in the D matrix

are chosen and the two rows representing these job families in the F matrix are averaged

together to form a new F matrix. This new, smaller F matrix is then used to begin the next

iteration. It is important to note that the same column means of the F matrix from the very first

iteration (i.e., all jobs) are used for every iteration. Thus, each new iteration starts, not with

the recalculation of the column means, but with the recalculation of the G matrix.

Depending upon the condition, the number of iterations continues until either 6, 9, or 12

job families are formed in Design A and until 9, 16, or 23 job families are formed in Design

B. H, is calculated during each iteration from the D. vector so that it is possible to track the

amount it is reduced with each iteiation.

b. Clustering to Maximize Selection Efficiency (SE)

The algorithm that clusters jobs to maximize predictive validity is called the selection-

efficient (SE) clustering method. This algorithm represents a heuristic that attempts to provide

a practical way of obtaining the highest possible predictive validity in a set of job clusters. The

absolute optimal method for forming selection-efficient job clusters would be to evaluate every

possible combination of jobs in terms of predictive validity. This would require calculating R2

values for millions of different combinations which is beyond the practical resources for this

research. Instead, an algorithm was developed that utilizes two stages in an attempt to obtain

the highest predictive validity possible (see Appendix H for the selection-efficient clustering

program). The descriptions contained in this section are limited to describing the selection-

efficient procedures for clustering the 18 jobs in Design A. This clustering procedure was not

used in Design B.

In the first stage, the validity matrix (V) from the analysis sample is used to determine

an initial combination of jobs into job families. Each row of V represents the validities

pertaining to a job. Depending upon the condition (6, 9, or 12 job families), differing numbers

of rows are averaged to form single validity vectors. For example, for the 6 job family

condition, all possible combinations (816 combinations) of three jobs are averaged. The result
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is a new 816 x 29 validity matrix (V,) in which each row represents a different three-job

combination. For each of these rows, V(R)-V' is calculated to obtain R2 (R, is the matrix of

predictor intercorrelations from the analysis sample). An iterative procedure is then performed

in which the three-job group with the largest R is selected first, then the next largest R that does

not involve the three jobs in the first selected family, etc. until six non-overlapping families have

been located. Thus, for the 6 job families condition, all 18 jobs are covered by the six

groupings of three jobs each. For the 9 job families condition, all possible combinations (153

combinations) of two jobs will be averaged forming V2 and then the iteration procedure

described above commences. For the 12 job families condition, as many two job combinations

as possible will be formed, but some of the final job groupings will contain only one job (V3).

In the second stage, the initial job groupings formed in the first stage are shredded to

determine if other job combinations result in higher average multiple R's. For example, for the

6 job family condition, beginning with the triplet with the lowest average R, each job in that

triplet will be considered with every other grouping and a new average R calculated using the

formula: tr[V(R-V'](l/m). Of these 15 trials, the trial combination with the greatest overall

average R will be selected. This shredding process will be repeated with the next set of triplets

(and eventually sets of doubles) until no substantial increase in average R is obtained. However,

note that for each of the conditions there must always be at least one job in each of the job

families. In addition, once ajob cluster has had other jobs added to it, that job cluster no longer

becomes eligible to be shredded. This job cluster does continue to be eligible to have jobs added

to it.

In this way, selection-efficient job family clusters are created. The composition of the

job family clusters will differ depending upon whether there are 6, 9, or 12 job families. Note

also that the compe,aon of the clusters will differ depending upon the data source.

2. Cross-Sample Generation of Synthetic Scores

For this research, 20 cross-samples were generated using m3del sampling techniques for

both Designs A and B. The goal in generating these cross-samples is to obtain predicted

performance scores (LSEs) for all entities in every job family. The procedure for accomplishing

this generation involves four stages which are discussed below:

a. the generation of random normal deviates;
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b. the transformation of normal deviates into test scores simulating the
characteristics of the test scores in the designated population;

c. the transformation of test scores into predicted performance scores
corresponding to each job family for use as assignment variables;

d. elimination of all performance scores below a cutting score on the
AFQT which eliminates 25% of all generated entities (to simulate selection).

a. Generation of Random Normal Deviates

In the first stage, a uniformly distributed random sequence of numbers ranging from 0

to 1, with an approximate mean of 0.5 and a variance of 0.0833 was produced using a pseudo-

random number generator (Appendix I contains the program for the random number generator).

The choice of a random number generator routine was based on evidence documenting efficient

impleientation and empirical tests of the randomness of the program's output (Park & Miller,

1988). A clearly defined algorithm, initial parameters, and a recorded initial seed allow

replication of the experiment (see Appendix I, Tables I-1 and 1-2 for the initialization seeds used

for this study). The optimal multipliers for producing the number sequence were based on

Fishman and Moore's (1986) recommendations. Thus, the potential problems inherent in a

random number generator are minimized by careful selection of routines and inputs.

The sequence of uniformly distributed random numbers was transformed into a

distribution of normal variables by calculating the expected mean and dividing by expected

values to give a mean of 0 and standard deviation of 1.0. These calculations produced a matrix

of normal deviates, X,, of order N by n, where N is the number of entities (individuals) and n

is the number of simulated scores representing the full set predictors. For Design A, one sample

of N=264 and n=29 was generated for each of twenty separate cross-samples. For Design B,

one sample of N=400 and n=9 was generated for each of twenty separate cross-samples.

b. Transformation of Random Normal Deviates to Test Scores

The aim at this second stage was to transform the matriU X. into a matrix of test scores

(Y) for each of the experimental conditions. The generated test scores are required to have

expected covariances equivalent to those of the population which are represented by the

intercorrelations in R,, i.e., E(1/N(Y'Y)) = R. A Gramian factor solution (F, = AD't2A',
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where A and D are the eigenvectors and eigenvalues of the population predictor

intercorrelations, respectively), was used to transform the matrix X, into a matrix of test scores

(Y). Thus, Y was generated by Y = X., In Design A, for the "McLaughlin" and Project A-

ASVAB conditions, only the first nine test scores (corresponding to the nine ASVAB tests) are

retained for the next stage.

c. Transformation of Test Scores to FLS Composites

The aim in this third stage was to generate an N by m matrix (Z) of predicted

performance scores to be used as assignment variables, where N is the number of entities and

m is the number of jobs. Thus, this Z matrix contained the predicted performance of each entity

in every job family. A transformation matrix of beta weights, W = lW-V', was computed using

the analysis sample data (for Design B the population data was utilized). A different V matrix

was used in each of the 18 conditions because each condition represents a different set of job

families. The weights are applied to the Y matrices of cross-samples so that the calculation of

predicted performance scores is accomplished by Z = YW.

d. Selection of Entities by the AFOT Score

Within each sample, a selection ratio of 0.75 was applied based upon a ranking on

synthetic AFQT scores. Thus, entities with the lowest 25 % of the AFQT scores were dropped

from the analysis and not considered for assignment. For each cross-sample in Design A, out

of the 264 entities generated, 198 entities were optimally assigned. For Design B, out of the

400 entities generated, 300 entities were optimally assigned. The AFQT score is calculated by

the formula containing the ASVAB tests Arithmetic Reasoning, Numerical Operations, and

Verbal Ability (Appendix B, Table B-2). Note that the Army's computation of the AFQT has

recently been modified to included Mathematical Knowledge instead of the weighted Numerical

Operations test (see Welsh, Kucinkas, & Curran, 1990). The original equation will be used in

this study to coincide with the time-franie of the Project A concurrent validation and

"McLaughlin* data collections.

3. Assignment Simulation

Entities are optimally assigned to job families through the use of a hybrid adaptation of

a primal linear programming (simplex) algorithm. The optimal assignment procedure is a

modified personal computer version of the "NETG" mathematical programming system
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(published by Analysis, Research, and Computation, Inc., Austin, Texas). Tt is implemented

through the use of a circularized network optimization model. In this assignment algorithm,

quotas are met at each iteration while the allocation sum converges toward the final optimal

solution. At the final iteration the objective function, MPP, based on evaluation sample weights,

is maximized.

For this study, entities are optimally assigned to job families not individual jobs. Once

assignment to a job family has occurred the entities are randomly assigned to the jobs within that

job family as a second assignment stage. The quotas for job families are set so that there will

be equal quotas for each job in every condition. For Design A, since there were 18 jobs, equal

quotas of 11 entities per job were set so that all 198 selected entities were assigned. For Design

B, since there were 60 jobs, equal quotas of 5 entities per job were set so that all 300 selected

entities were assigned. i, Note that the actual number of entities assigned to each job family as

a constraint of the optimal assignment algorithm will differ depending upon how many jobs are

in that family.

For all of the designs in this reseaich except Design A-3, the assignment variables are

FLS composites. For Design A-3, U.S. Army aptitude area composites were calculated for use

as assignment variables. After assignment, regression weights derived from the designated

population (the evaluation weights) are used to calculate the MPP of entities in each job.

Assignment is made by job family, but evaluation using MPP based on weights obtained from

the population, is accomplished separately for each job.
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III. EXPECTED FINDINGS AND ACTUAL RESULTS

A MPP standard score represents the average of expected performance for a sample of

entities on the jobs to which each is assigned. The procedure described above produced 20 MPP

scores for each condition in Designs A and B. The expected findings for Designs A and B are

described separately below.

Design A

1. Number of Job Families

a. The magnitude of the MPP scores will increase significantly as the number of job
families is increased from 6 to 9 and then to 12 job families.

b. The efficiency of classification varies with the number of job families according to
a negatively accelerated function such that the increase in MPP from 6 to 9 job families will be
greater than the increase in MPP from 9 to 12 job families.

2. Job Clustering Methods

a. The CE clustering method will result in significantly greater MPP scores than the SE
clustering method across all conditions.

b. The empirical methods of job clustering (CE and SE) will result in significantly
greater MPP scores than the current U.S. Army operational job families.

c. Clustering based on all 29 Project A tests will provide significantly greater MPP than

clustering based on the standard 9 ASVAB tests.

3. Type of Predictor Measure

When the assignment variables are based on all 29 Project A tests, MPP will be
significantly greater than when the assignment variables are based on the standard 9 ASVAB
tests.

4. Type of Criterion Measure

a. There will be no significant difference in MPP scores due to the use of assignment
variables based on the Project A concurrent validation criterion measure, Core Technical
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Proficiency, and the "McLaughlin" 1981-1982 criterion measures, Skill Qualification Tests
(SQTs) and end-of-course training scores.

b. The conclusions from statistical significance tests between the levels of all of the other
variables in this design will be the same when either set of data (differing with respect to the two
kinds of criteria) is used to: (1) select job family sets, and (2) compute weights to be applied
to assignment variables. If the conclusions reached using the two different criteria for
hypotheses 1 and 2 are the same, then this hypothesis is accepted. If any significance test has
different results for the two criteria, the p-values will be examined to determine if they are
within a designated range (i.e.,. 10) indicating that for practical purposes conclusions using the
two criteria are essentially the same.

5. FLS Composites versus Aptitude Area Composites

Any condition involving FLS assignment will result in significantly greater MPP scores
than assignment based upon the Army operational aptitude area composites.

Design B

1. Number of Job Families

a. The magnitude of the MPP scores will increase significantly as the number of job
families is increased from 9 to 16 and then to 23 job families.

b. The efficiency of classification varies with the number of job families according to
a negatively accelerated function such that the increase in MPP from 9 to 16 job families will
be greater than the increase in MPP from 16 to 23 job families.

2. Job Clustering Methods

a. The empirical methods of job clustering (CE and SE) will result in significantly
greater MPP scores than the current U.S. Army aptitude area job families, the Career
Management Field (CMF) categories, or a combination of these two operational groupings.

A. Job Clustering Results

The classification-efficient (CE) clustering method was successful in providing job

clusters that minimized the reduction in Horst's differential index, Hd, during each iteration.

The selection-efficient (SE) clustering method, however, was not successful in creating job

clusters that maximized predictive validity. Nevertheless, it was discovered that the CE clusters

actually had very high average weighted R2 values even though these jobs were clustered based
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on Hd. Explanations for the lack of success with the SE method as well as further implications

are discussed below. Also discussed below is a comparison of the operational job families to

the empirical job families in terms of several key indices.

1. Classification-Efficient Job Families

The classification-efficient clustering method resulted in sets of 6, 9, and 12 job families

for Design A and sets of 9, 16, and 23 job families for Design B. For Design A, 18 jobs were

clustered into job families using three different data sources (Project A-Experimental Battery;

Project A--ASVAB; and "McLaughlin"). Tables 8, 9, and 10 present the classification-efficient

job families for each data source in Design A. For Design B, 60 jobs from the "McLaughlin"

database were clustered into job families. Tables 11, 12, and 13 present the classification-

efficient job families for Design B.

Corresponding to each of these sets of job families is a value for Horst's average

differential index, H&/m, where m is the number of assignment variables (i.e., job families).

Table 14 presents the Hd/m indices for all conditions. As expected, there were increases in the

Hd indices as the number of job families increased from 6 to 9 to 12, and from 9 to 16 to 23.

This finding gives an indication of the amount of differential validity gained in the "back"

sample as the number of job families is increased.

Johnson and Zeidner (1990, 1991) criticized the use of a version of lid proposed by

McLaughlin et al. (1984) as a measure of CE. McLaughlin et al. (1984) proposed use of an

index, M, as a measure of CE when the assignment variables are not FLS composites. The use

of M cannot be justified as comparable to Horst's index of differential validity (H) and was

inappropriate for use as a measure of CE. However, McLaughlin et al. (1984) proposed a

baseline measure, H, which appears to be proportional to Hd (HW = Hd/m). The index H would

be proportional to Hd across data sets. The use of Rd in the "back" (analysis) sample as an

approximation of CE is comparable to the use of H, but not M, in McLaughlin et al. (1984) as

a measure of CE.

Also included in Table 14 is a ceiling average Hd value which is the maximum amount

of H/m possible in a set of data determined by calculating Hd for all jobs prior to clustering.

The purpose of the CE clustering method was to minimize the reduction in Rd as jobs are

formed into job families. Comparisons with the ceiling values give an indication of the
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Table 8

Design A Classification-Efficient Job Families for Project A (Experimental Battery

Data Source

6 Job Families 9Job amifk 12 Job Families

Job Family 1 Job Family 1 Job Family 1
Infantryman Infantryman Infantryman
NBC Specialist NBC Specialist NBC Specialist
Petroleum Supply SpeciaList Petroleum Supply Specialist Petroleum Supply Specialist
Combat Engineer Combat Engineer
148-160 Armor Crewmember 48-160 Armor Crenember

Job Family 2 Job Family 2 Job Family 2
Cannon Crewmember Cannon Crewmember Combat Engineer
Light Wheel Vehicle Mechanic Light Wheel Vehicle Mechanic .8-1460 Armor Crewmember
Medical Specialist Medical Specialist
Motor Transport Operator
Military Police
Utility Helicopter Repairer

Job Family 3 Job Family 3 Job Family 3
KANPAS Crewmember MANPADS Creamember Cannon Cremmember
Administrative Specialist
Food Service Specialist
Unit Supply Specialist

Job Famity 4 Job FamiLy 4 Job Family 4
TOW/DRAGON Repairer TOW/DRAGON Repairer MANPADS Crewmember

Job Family 5 Job Family 5 Job Family 5
Single Channel Radio Operator Single Channel Radio Operator TOW/DRAGON Repairer

Job Family 6 Job Family 6 Job Fami ty 6
Amnition Specialist Amunition Specialist Single Channel Radio Operator

Job Family 7 Job Family 7
Motor Transport Operator Aammition Specialist
Military Police
Utility Helicopter Repairer

Job Family 8 Job Family 8
Administrative Specialist Light Wheel Vehicle Mechanic
Food Service Specialist Medical Specialist

Job Family 9 Job Family 9
Unit Supply Specialist Motor Transport Operator

Military Police

Job Family 10
Utility Helicopter Repairer

Job Family 11
Administrative Specialist

Food Service Specialist

Job Family 12
Unit Supply Specialist
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Table 9

Design A Classification-Efficient Job Families for Project A (ASVAB tests)

Data Source

6 Job Families 9 Job Families 12 Job Families

Job Family 1 Job Family 1 Job Family I

Infantryman Infantryman Infantryman

Unit Supply Specialist Unit Supply Specialist Unit Supply Specialist

NBC Specialist NBC Specialist NBC Specialist

Single Channel Radio Operator

Job Family 2 Job Family 2 Job Family 2

Combat Engineer Combat Engineer Combat Engineer

W#8-M60 Armor Lremaember N48-M60 Armor Crewmember M48-MW Armor Crewmember

TOU/DRAGON Repairer TOW/DRAGON Repairer

Job Famity 3 Job Family 3 Job Family 3

Cannon Crewmember Cannon Crewmember Cannon Crewmember

Light WheeL Vehicle Mechanic Light Wheel Vehicle Mechanic Light Wheel Vehicle Mechanic

Utility Helicopter Repairer Utility Helicopter Repairer Utility Helicopter Repairer

Motor Transport Operator

Job FamiiY 4 Job Family 4 Job Family 4

MANPADS Cremember MANPADS Creumember MANPADS Crewmenier

Medical Specialist Medical Specialist Medical Specialist

Military Police Military Police

Job Famity 5 Job Family 5 Job Family 5

Anmnition Specialist Single Channel Radio Operator TOW/DRAGON Repairer

Administrative Specialist
Food Service Specialist

Job Family 6 Job Family 6 Job Family 6

Petroleum Supply Specialist Ammition Specialist Single Channel Radio Operator

Job Family 7 Job Family 7

Motor Transport Operator Ammunition Specialist

Job Family 8 Job Family 8

Administrative Specialist Motor Transport Operator
Food Service Specialist

Job Family 9 Job Family 9

PetroLeum Supply Specialist Administrative Specialist

Job Family 10
Petroleum Supply Specialist

Job Family 11
Food Service Specialist

Job Family 12
Military Police
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Table 10

Design A Classification-Efficient Job Families for McLaughlin Data Source

6 Job Families 9 Job Families 12 Job Families

Job Family 1 Job Fami ty 1 Job Family 1

Single Channel Radio Operator Single Channel Radio Operator Single Channel Radio Operator

Motor Transport Operator Motor Transport Operator Motor Transport Operator

M48-M60 Armor Crebanenber M48-M60 Armor Crewmember
Food Service Specialist Food Service Specialist

Military Police Military Police

Infantryman
Cannon Crewmember

Job Family 2 Job Family 2 Job Family 2

Combat Engineer Infantryman Infantryman

Light Wheel Vehicle Mechanic Cannon Creumember Cannon Crenember

Utility Helicopter Repairer
Petroleum Supply Specialist
MANPADS Cretwnember

Job Family 3 Job Family 3 Job Family 3

TOW/DRAGON Repairer Combat Engineer Combat Engineer
Light Wheel Vehicle Mechanic Light Wheel Vehicle Mechanic
Utility Helicopter Repairer
Petroleum Supply Specialist

Job Family 4 Job Family 4 Job Family 4

NBC Specialist MANPADS crewlnenber MANPADS Crewmember

Job Family 5 Job Family 5 Job Family 5

Anmnition Specialist TOW/DRAGON Repairer 1448-M60 Armor Crewmember

Unit Supply Specialist Food Service Specialist

Administrative Specialist Military Police

Job Family 6 Job Family 6 Job Family 6

Medical Specialist NBC Specialist TOW/DRAGON Repairer

Job Family 7 Job Family 7

Ammunition Specialist NBC Specialist

Unit Supply Specialist

Job Family 8 Job Family 8
Administrative Specialist Ammunition Specialist

Unit Supply Specialist

Job Family 9 Job Family 9
Medical Specialist Utility Helicopter Repairer

Job Family 10
Administrative Specialist

Job Family 11
Petroleum Supply Specialist

Job Family 12
Medical Specialist
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Table 11

Nine Classification-Efficient Job Families for Design B

JOB JOB
FAMILY MOS n FAMILY MOS n

1 05C Radio TT Operator * 2393 4 12F Engineer Tracked Crm 151

1 118 Infantryman * 6355 4 36C Wire Sys Inst/Op 499

1 I1C Indirect Fire Infmn 1494 4 63N M6OA1/A3 Tank Sys Mech 286

1 128 Combat Engineer * 3109 4 63W Wheel Veh Mechanic 180

1 12C Bridge Crewinan 450 4 68J Aircraft FC Repairer 148

1 139 Cannon Crmn * 6575 4 918 Medical Specialist * 783

1 13F Fire Support Sp 693 -----------------------------------------------

1 15D Lance Crmb/MLRS Sgt 281 5 27F Vulcan Repairer 130

1 16S MANPADS Cretentmer * 596 5 52D Power Generation Equip Rep 178

1 190 Cavalry Scout 1249 5 54E NBC Specialist * 113

1 19E 1448-1460 Armor Crmn * 3297 -----------------------------------------------

1 31M Multichannel Cown Eq Op 2482 6 43E Parachute Rigger 100

1 31V Tac Comm Sysop/Mech 515 6 68G Aircraft Structural Rep 125

1 626 Construction Equip Rep 233 6 76C Eq Rec & Parts Sp 331

1 62E HV Const Equip Rep 202 -----------------------------------------------

1 639 Lt Wh Veh/Pwr Gen Mech a 1495 7 57H Cargo Specialist 272

1 63H Track Veh Repairer 335 7 71N Traffic Mgmt Coordinator 163

1 64C Motor Transport Op a 3681 -----------------------------------------------

1 67N Utility Net Repairer* 511 8 62F Lifting/Loading Eq Op 129

1 67V 091/Scout Hel Rep 294 8 71K Chapel Activities Sp 182

1 72E Combat Telecom Center Op 569 8 74F Programner/Anatyst 95

1 76W Petroleum Supply Sp * 664 -----------------------------------------------

1 82C Field Artillery Surveyor 434 9 71L Administrative Sp * 2824

1 948 Food Service Sp * 3943 9 73C Finance Specialist 688

1 959 Military Police * 4516 9 740 Computer/Tape Writer 132
-----------------.--.-----.-------------------- 9 758 Personnel Admin Sp 1061

2 05H Etec War/SIGINT INTERIMC 171 9 76V Mat Stor & Ndtg Sp 216

2 98C Elec War/SIGINT Analyst 186 9 93R Air Traffic Con Tower Op 114
............................................... 9 968 Intelligence Analyst 218

3 11H HV Anti-Armor Wpn Infn 979

3 13E Cannon Fire Direction Sp 627 * = MOS for Design A

3 27E TOW/Dragon Rep * 363

3 31N Tactical Ckt Con 189

3 559 Ammunition Sp a 288

3 76Y Unit SuppLy Sp * 1149

3 91E Dental Specialist 203

3 91P X-Ray Specialist 159

3 928 Medical Lab Sp 310
---------.-------------------------------------

(continued)
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Table 12

Sixteen Classification-Efficient Job Families for Design B

JOB JOB
FAMILY MOS n FAMILY MOS n

--- ---- ------ --------------------------------- -. .-- -- - -- - --- - -- - -- --- -- -- - ---- - --- -- -----------

1 05C Radio TT Operator * 2393 8 27F Vulcan Repairer 130

1 118 Infantryman * 6355 8 521) Power Generation Equip Rep 178
1 11C Indirect Fire Infnn 1494 8 54E NBC Specialist * 113

1 12C Bridge Crewman 450 -----------------------------------------------

1 13B Cannon Cron * 6575 9 31N Tactical Ckt Con 189

1 13F Fire Support Sp 693 9 91P X-Ray Specialist 159

1 190 CavaLry Scout 1249 -----------------------------------------------

1 19E M48-960 Armor Cmn * 3297 10 36C Wire Sys Inst/Op 499
1 31V Tac Comm Sysop/Mech 515 10 63N M6OA1/A3 Tank Sys Mech 286
1 628 Construction Equip Rep 233 10 68J Aircraft FC Repairer 148
1 62E RV Const Equip Rep 202 10 919 Medical Specialist * 783

1 63H Track Veh Repairer 335 -----------------------------------------------

I 64C Motor Transport Op * 3681 11 43E Parachute Rigger 100
1 67V 0GN/Scout Net Rep 294 -----------------------------------------------

1 82C Field Artillery Surveyor 434 12 57H Cargo Specialist 272

1 94B Food Service Sp * 3943 12 71N Traffic Mgmt Coordinator 163

1 958 Military Police * 4516 -------------- ...............................

............................................... 13 62F Lifting/Loading Eq Op 129

2 05H Etec War/SIGINT INTER_IMC 171 13 71M Chapel Activities Sp 182
2 98C ELec War/SIGINT Analyst 186 -----------------------------------------------

............................................... 14 68G Aircraft Structural Rep 125

3 11H HV Anti-Armor Wpn Infn 979 14 76C Eq Rec & Parts Sp 331

3 13E Cannon Fire Direction Sp 627 -----------------------------------------------

3 559 Ammunition Sp * 288 15 71L Administrative Sp * 2824

3 76Y Unit Supply Sp * 1149 15 73C Finance Specialist 688

3 91E Dental Specialist 203 15 74D Computer/Tape Writer 132
-----.-----.--------------.-------------------- 15 759 Personnel Admin Sp 1061

4 129 Combat Engineer * 3109 15 76V Mat Stor & Ndtg Sp 216

4 15D Lance Crmb/MLRS Sgt 281 15 93H Air Traffic Con Tower Op 114

4 63B Lt Wh Veh/Pwr Gen Mech * 1495 15 968 Intelligence AnaLyst 218

4 67N UtiLity Mel Repairer* 511 -----------------------------------------------

4 76W PetroLeum Supply Sp * 664 16 74F Programmer/Analyst 95
----------.--------..---------------------.----

5 12F Engineer Tracked Crmn 151 * = NOS for Design A

5 63W Wheel Veh Mechanic 180
---------------------.-------------------------

6 16S MANPADS Crewmmtber * 596

6 31M Muttichannet Com Eq Op 2482

6 72E Combat Telecom Center Op 569
-.--------------------------.-------------.----

7 27E TOW/Dragon Rep* 363

7 929 Medical Lab Sp 310

(continued)

56



Table 13

Twenty-three Classification-Efficient Job Families for Design B

JOB JOB
FAM4ILY Mos n FAMILY Mos n

1 05C Radio TT Operator *2393 9 27F Vulcan Repairer 130

1 11B infantryman * 6355 9 52D Poweer Generation Equip Rep 178
1 11C Indirect Fire Infnn 1494---------- ----- ------ ---

1 139 Cannon Cram * 6575 10 31N Tactical Ckt Con 189
1 190 Cavalry Scout 1249 10 91P X-Ray Specialist 159
1 31V Tac Coumm Sysop/Mech 515---------- --------------

1 63H Track Veh Repairer 335 11 36C Wire Sys Inst/Op 499
1 64C Motor Transport Op '3681 11 6861 Aircraft FC Repairer 148
1 949 Food Service Sp * 3943 11 919 Medical Specialist * 783
1 959 Military Police *4516----------- --------- --- -

-- -- -- -- -- --- -- -- -- -- - -- -- -- -- -12 43E Parachute Rigger 100

2 05H1 Elec War/SIGINT INTER-INC 171------- -----------------

2 98C Elec Uar/SIGINT Analyst 186 13 54E NBC Specialist * 113

3 11H NV Anti-Armor Wpn Infn 979 14 57H1 Cargo Specialist 272
3 13E Cannon Fire Direction Sp 627 14 71N1 Traffic Mgmt Coordinator 163
3 559 Ammunition Sp * 288------------ ------------

3 76Y Unit Supply Sp *1149 15 62F Lifting/Loading Eq Op 129
3 91E Dental Specialist 203 15 71M Chapel Activities Sp 182

4 129 Comb~at Engineer * 3109 16 63N1 M6OA1/A3 Tank Sys Mech 286
4 150 Lance Cruib/MLRS Sgt 281---------- ------- ---- ---

4 639 It Wh Veti/Pwr Gen Mech * 1495 17 63W Wheel Veh Mechanic 180
4 67W1 Utility Mel Repairer *511---------- ---- --- ---- ---

4 76W Petroleum Supply Sp *664 18 6BG Aircraft Structural Rep 125
--------------------------------- 18 76C EqRec &Parts Sp 331

5 12C Bridge Crewman 450-- ----- --- - - - - - - - - - - - - --

5 13F Fire Support Sp 693 19 711 Administrative Sp *2824

5 19E 1M48-M60 Armor Cram 3297 19 73C Finance Specialist 688
5 629 Construction Equip Rep 233 19 759 Personnel Admin Sp 1061
5 62E HV Const Equip Rep 202------------------------

5 67V 061/Scout Mel Rep 294 20 74D Computer/Tape Writer 132
5 82C Field Artillery Surveyor 434 20 968 Intelligence Analyst 218

6 12F Engineer Tracked Crm 151 21 74F Progranmmer/Analyst 95

7 16S MANPADS Crewmewrber * 596 22 76V Mat Stor & Hdlg Sp 216
7 31M Multichannel Commn Eq Op 248& 22 93H1 Air Traffic Con Tower Op 114
7 72E Combat Telecom Center Op 569------------------------

-- -- - -- -- --- -- - -- -- - -- -- - -- -- -23 928 Medical Lab Sp 310

8 27E TOW/Dragon Rep * 363 _____________________

--- --- --- --- -- --- --- --- -- --- --- --- -M OSfor Design A

(continued)
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Table 14

Comparison of Hd/ma Indices Across Conditions

DESIGN A

Project A Project A McLaughlin
Exp. Batt. ASVAB ASVAB

Ceiling Hd/mb 3.340 1.377 0.759

12 CE Job Families 2.712 1.225 0.728

9 CE Job Families 2.264 1.074 0.683

6 CE Job Families 1.662 0.860 0.602

9 Operational
Job Families 1.963 0.805 --

DESIGN B

CE Operational
Method Method

Ceiling Hd/mb 4.490 4.490

23 Job Families 3.893 2.730

16 Job Families 3.545 2.350

9 Job Families 3.025 0.924

'The value m represents the number of assignment variables (i.e., job families).
bCeiling values were calculated using all jobs individually before grouping into job

families.
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reduction in Hd expected when grouping jobs into job families. For example, for the Project A

(Experimental Battery) condition in Design A, grouping 18 jobs into 9job families using the CE

method resulted in a one-third decrease in average Hi. For Design B, grouping 60 jobs into 23

job families using the CE method resulted in a one-sixth decrease in average d.

Table 14 also contains the average Hd indices (Hd/m) for the operational job families used

in this research. For Design A, 18 jobs were grouped into the nine operational aptitude areas

currently used by the Army and d values were calculated using both the Proj.A (Exp.Batt.) and

Proj.A (ASVAB) data sources. Note that the average Hd values for the nine operational job

families were substantially lower than the values for the nine CE job families for both data

sources. For the Proj.A (ASVAB) data source, the average Hd value for the nine operational

job families was even lower than for the six CE job family condition. For Design B, the

average HI' values for the operational job families were also substantially lower than for the CE

job families across all conditions.

Overall, comparisons of these average I- results in Table 14 give preliminary but

inconclusive evidence for many of the expected findings presented earlier. This evidence is

inconclusive because, although it has been shown that R can be linked to MPP through its

relationship to Brogden's measure of classification efficiency, this is a "back" sample

relationship. Only by conducting simulations based upon the real data, generating MPP score,

and statistically analyzing these scores can the evidence be conclusively presented in independent
"cross" samples.

For Design A, examination of the jobs within each of the job families across all

conditions shows that the CE clustering technique resulted in job families of varying sizes

ranging anywhere from 1 job to 7 jobs. Across the sources of data, the Proj.A (Exp.Batt.)

condition resulted in job families that shared some similiarities to the Proj.A (ASVAB)

condition. For example, Infantryman and NBC Specialist clustered in the same family for both

conditions and Combat Engineer and M48-M60 Armor Crewmember clustered together for both

conditions. The "McLaughlin" data resulted in clusters that appeared to have little in common

with either of the Project A concurrent validation data set clusters.

For Design B, the classification-efficient job families formed ranged in size from 1 job

to 25 jobs. Comparison of these job families with the operational job families presented earlier
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(see Tables 5, 6, and 7), revealed little similarity between in the two groupings. The operational

job families contained generally logical groupings of similar types of jobs. The CE job families

often grouped together more aiverse types of jobs. The MOS in a prior job families are, of

course, in a particular family because they appear to belong to that family. Thus, their higher

face validity for membership in their family should not be surprising. Across all CE conditions,

the first job family was always the largest, with the first job family gradually getting larger as

the number of formed clusters decreased from 23 to 16 to 9. This first job family was generally

composed of combat jobs, mechanic and repair jobs, and various other specialist jobs. The

diversity of jobs in the CE job families indicates that it would not be easy to form classification-

efficient clusters a priori.

There are two other indices that are important for evaluating the classification-efficient

clusters and comparing them to the operational clusters. The first is the predictiv: validity or

average weighted R2 value across job family conditions, and the second is the average

intercorrelation among the LSEs (r).

Table 15 provides a comparison of the average weighted R2 values for all conditions.

The average weighted R2 value for each condition was calculated by weighting the R2 values for

each job family by the number of jobs in that job family, adding these values, and dividing by

the total number of jobs. As with the H1 index, there was a maximum amount of R2, calculated

using each job individually, that acts as a ceiling for the highest average R2 values possible for

a given condition. From Table 15, note that even though the CE job families were formed based

on Hd their average weighted R2 values are fairly high in comparison to the ceiling values.

Naturally, the 12 cluster and 23 cluster conditions were closest to the ceiling values calculated

using all jobs (either 18 or 60 jobs). However, grouping the jobs into smaller sets of job

families for Designs A and B also did not result in large decrements in R2. This finding appears

to be supportive of validity generalization (VG) theory and may be another excellent example

of how DAT and VG are not necessarily inconsistent.

From Table 15, note also that the average weighted R2 values for the operational job

families are only slightly lower than the CE job families for both Designs A and B. Recall that

there did appear to be fairly substantial differences between the operational job families and the

CE job families in terms of the K index (see Table 14). Thus, it appears that the CE empirical
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Table 15

Comparison of Average Weighted R2 Indices Across Conditions

DESIGN A

Project A Project A McLaughlin
Exp. Batt. ASVAB ASVAB

Ceiling R & .589 .437 .342

12 CE Job Families .554 .428 .340

9 CE Job Families .529 .419 .338

6 CE Job Families .496 .407 .333

9 Operational
Job Families .508 .404 --

DESIGN B

CE Operational
Method Method

Ceiling R2' .374 .374

23 Job Families .364 .343

16 Job Families .358 .336

9 Job Families .349 .313

'Ceiling values were calculated as the average of the R2 values computed separately

for each job.
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clustering method provided a meaningful improvement in Hd compared to the operational system

with the predictive validity (R2) of both methods remaining virtually identical.

The last important index that can be examined is the intercorrelations among the LSEs,

r. Increasing the number of job families in a classification-efficient manner should decrease the

intercorrelation among the LSEs. This effect occurs because each increase in the number of job

families should provide greater uniqueness for the job families. Table 16 shows the average

intercorrelations among the LSEs for the different job family conditions. As expected, for both

of the Project A concurrent validation data sources in Design A, the average intercorrelation

decreased steadily as the number of job families increased from 6 to 9 to 12. Unexpectedly, this

relationship did not hold for the "McLaughlin" data source in Design A. In fact, the average

intercorrelation for "McLaughlin" increased as the number of job families increased. However,

with the number of jobs expanded to 60 in Design B for the "McLaughlin" data (see Table 16),

the expected relationship of a decrease in the average intercorrelations when the number of job

families increased was apparent. From Table 16, also note that the average intercorrelations

among the LSEs for the nine operational job families in Design A fell just above the average for

the nine CE job families for both data sources. Likewise, the average intercorrelations for the

operational job families in Design B were greater than the average intercorrelations for the CE

job families.

2. Selection-Efficient Job Families

The selection-efficient (SE) job clustering method developed for this research did not

provide a solution that was at all credible in approximating the maximization of predictive

validity (R2). As discussed previously in the method section, the SE method developed for this

research was a two-stage heuristic approach intended to provide a practical method of obtaining

a close approximation to the highest possible predictive validity in a set of job clusters without

having to evaluate every possible combination of jobs in terms of predictive validity.

The first stage of the algorithm was an initial combination of jobs into job clusters. For

the six job family condition (Design A), this meant clustering the 18 jobs into six sets of families

each containing three jobs. Sets of jobs were selected so that six non-overlapping families were

chosen that had the highest R2 values. The R2 values for all possible sets of three jobs were

computed and the triplet with no overlap with the first set that had the next highest R2 was then
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Table 16

Comparison of the Average Intercorrelations Among the LSEs

for all Job Family Conditions

DESIGN A

Project A Project A McLaughlin
Exp. Batt. ASVAB ASVAB

12 CE Job Families .699 .843 .876

9 CE Job Families .720 .851 .862

6 CE Job Families .763 .909 .833

9 Operational
Job Families .750 .873 --

DESIGN B

CE Operational
Method Method

23 Job Families .775 .906

16 Job Families .805 .907

9 Job Families .809 .973
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selected. This process was continued until all jobs were placed in a selected triplet. For the 9

and 12 job family conditions, the 18 jobs were initially grouped into sets of two jobs (for the

12 job family condition most families had two jobs but a few had only one job).

The second stage of the algorithm involved shredding these initial clusters to determine

if there were other combinations of jobs that had a higher predictive validity. This shredding

process had a constraint that once jobs were added to an evolving cluster, that cluster was no

longer eligible to be shredded. Without this constraint, the algorithm would have Leen infeasible

because it would have been no different than evaluating all possible combinations of jobs.

Tables 17 and 18 give examples of six job families formed using the SE method for

Proj.A (Exp.Batt) and Proj.A (ASVAB) data sources. The first column shows the initial set of

clusters from the first stage and the second column shows the final set of clusters after the

second stage shredding process. Although the initial set of clusters appeared perfectly

reasonable, note that the overall average weighted R2 value was not very high. In fact,

examination of Table 15 presented earlier for the CE job families reveal that the CE job families

had higher R2 values than these SE job families. This was true for all conditions in this

experiment.

It became apparent after examination of the data, that forcing the jobs into initial sets of

clusters severely restricted the R2 values. Some of the jobs individually had very high R2 values,

but they were forced together with one or two other jobs by the nature of the algorithm thereby

lowering their potential contribution to R2. The second stage shredding process was designed

to eliminate these problems with the first stage. From examination of Tables 17 and 18, it can

be seen that the second stage process provided only a slight increase in R2. Once again it

became apparent from examination of the data that the jobs which individually made the most

contribution to R2 were never isolated through this second stage of the algorithm. Instead, these

jobs had other jobs combined with them, and due to the constraints of the algorithm this new

job cluster was no longer eligible to be shredded.

Several attempts were made to develop reasonable alternative ways of forming selection-

efficient clusters. A modification to the algorithm was attempted that shredded jobs beginning

with the cluster that had the highest R2 value instead of the lowest R2 value. This was an

attempt to provide an opportunity for the jobs that contributed the most to overall R2 to be
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Table 17

Six Job Families for Project A (Experimental Battery Using Selection-Efficient

Clustering Method

Initial Clusters After Shredding

R2R

Job Family 1 0.711 Job Family 1 0.651

TOW/DRAGON Repea rer TOW/DRAGOd Repairer
PetroLeum SuppLy Specialist Petroleum Supply Specialist
Food Service Specialist Food Service Specialist

Infantryuan

Job Family 2 0.571 Job Family 2 0.625

Infantryman Combat Engineer
Combat Engineer 48-960 Armor Cremuember
M48-160 Armor Cremiember

Job Family 3 0.515 Job Family 3 0.515

MANPADS Crewmember 1ANPADS Crewmember
Single Charnel Radio Operator Single Charnel Radio Operator
NBC Specialist NBC Specialist

Job Family 4 0.443 Job Family 4 0.443

Anmunition Specialist Amunition Specialist
Administrative Specialist Acministrative Specialist
Unit Supply Specialist Unit Supply Specialist

Job Family 5 0.381 Job Family-5 0.381
Light Wheel Vehicle Mechanic Light Wheel Vehicle Mechanic
Utility Heticopter Repairer Utility Helicopter Repairer
Medical Specialist Medict 31ecialist

Job Family 6 0.246 Job Farmily 0.246

Cannon Crewnmemer Cannon Crewnember
Motor Transport Operator Motor Transport Operator
Military Police Military Police

Average Weighted R2 = Average Weighted R2 =
0.477893 0.478225
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Table 18

Six Job Families for Project A (ASVAB) Data Using Selection-Efficient

Clustering Method

Initial Clusters After Shredding

Job Family 1 0.629 Job Family 1 0.536

Combat Engineer Combat Engineer
TOW/DRAGON Repairer TOW/DRAGON Repairer

Petroleum Supply Specialist Petroleum Supply Specialist
Infantryman
M48-M60 Armor Crewwenmer
NBC Specialist

Job Family 2 0.493 Job Family 2 0.620

M48-M60 Armor Crewmember Food Service Specialist
NBC Specialist
Food Service Specialist

Job Family 3 0.416 Job Family 3 0.418

Infantryman Single Channel Radio Operator
Single Channel Radio Operator Unit Supply Specialist
Unit Supply Specialist

Jo Fmiy4 0.361 Job Family 4 0.361

MANPADS Creanember MANPADS Cretnmember

Administrative Specialist Administrative Specialist
Medical Specialist Medical Specialist

Job Family 5 0.296 Job Family 5 0.296

Ammunition Specialist Ammunition Specialist
Light Wheet Vehicle Mechanic Light Wheet Vehicle Mechanic
Utility Helicopter Repairer Utility Helicopter Repairer

Job Family 0.182 Job Family 6 0.182

Cannon Crewmember Cannon Cretwember
Motor Transport Operator Motor Transport Operator
Military Police Military Police

Average Weighted R2 = Average Weighted R2 =

0.396380 0.399455
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isolated. Although some different rearrangements of the jobs resulted from this procedure,

average weighted R2 values were not increased. Another attempt was made to apply the second

stage shredding process to the classification-efficient clusters. The idea was to try to

substantially increase the R2 values of the CE clusters by rearranging the jobs and designate this

new set of families as the SE job families. Not surprisingly, given the already high R2 values

for the CE clusters, this procedure resulted in little or no improvement in average weighted R2

values.

Given these disappointing results for the SE clustering method, it became obvious that

there was nothing to gain in retaining this condition in the basic research design (Design A-i).

Without any viable SE job families, it was not desirable to include this condition as part of the

model sampling experiment. This change meant that Design A-1 was modified to contain only

two independent variables forming a 3 x 3 design. Designs A-2 and A-3 were not affected by

these changes. For Design A-2, the CE job clusters represented the "empirical" method of

clustering to be compared with the Army's operational clusters (see Table 2). Additionally,

there would have been no point in using this SE algorithm with the 60 jobs in Design B, so that

the CE job clustering method also represented the "empirical" method of clustering for Design

B.

B. Model Sampling Experiment Results

The model sampling experiment involved the simulated assignment of 20 cross-samples

of entities to job families under 12 different experimental assignment conditions for Design A

and 6 different experimental assignment conditions for Design B. Table 19 shows the MPP

standard scores averaged across the 20 replications for each assignment condition for Designs

A-1, A-2, and A-3. Table 20 shows the MPP standard scores averaged across the 20

replications for each assignment condition for Design B.

Before performing any statistical tests on these results, it was first necessary to separate

out the effects due to classification from the effects due to selection. This research is concerned

with demonstrating the benefits in terms of increased classification effects under differing

experimental conditions. For this reason, it was desirable to subtract out of the MPP values the
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Table 19

Means and Standard Deviations of MPP Standard Scores for all Conditions

in Design A

DESIGN A-i: Classification-Efficient Job Clustering Method/Assignment with
FLS Composites

Project A Project A McLaughlin
Exp. Batt. ASVAB ASVAB

D1 D2 D3

Jl: 6 Job Families .464 .416 .278
(.037) (.045) (.036)

J2: 9 Job Families .539 .470 .261
(.039) (.046) (.039)

J3: 12 Job Families .592 .502 .286
(.049) (.052) (.040)

DESIGN A-2: Empirical (CE Clustering) versus Army Operational Job Families/
Assignment with FLS Composites

Project A Project A
Exp. Batt. ASVAB

D1 D2

M1: Empirical' .539 .470
9 Job Families (.039) (.046)

M2: Operational .505 .439
9 Job Families (.048) (.041)

DESIGN A-3: Army Operational Job Families/Assignment with Aptitude Areas

Project A
Aptitude Areas

D1

M2: Operational .317
9 Job Families (.050)

Note. Standard deviations appear in parentheses below means.
Values for Empirical conditions come directly from Design A-1.
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Table 20

Means and Standard Deviations of MPP Standard Scores for all Conditions

in Design B

DESIGN B: McLaughlin Data with 60 Jobs/Assignment with FLS Composites

Clustering Method

Empiricalf Operational
M1 M2

J1: 9 Job Families .480 .349
(.033) (.032)

J2: 16 Job Families .545 .472
(.036) (.037)

J3: 23 Job Families .588 .511
(.034) (.034)

Note. Standard deviations appear in parentheses below means.
5Classification-efficient clustering method.
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contribution due to selection effects leaving only the contribution due to classification. This

process can be accomplished by using the Naylor-Shine equation and table for determining the

increase in mean criterion score obtained by using a selection device (Naylor & Shine, 1965).

The basic equation underlying the Naylor-Shine approach is:

Si

where,

Z , = the mean criterion score (in standard score
units) of all cases above predictor cutoff

r, = the validity coefficient
d = the ordinate of the normal distribution at

the predictor cutoff
s, = the selection ratio.

A selection ratio of .75 was used in all of the simulations conducted for this research.

In addition, the AFQT was used as the selection device so it is the validity of the AFQT that is

used in this equation. The average AFQT validity for the Project A concurrent validation data

sources was calculated as 0.531. The average AFQT validity for the "McLaughlin" data with

18 jobs was 0.4905. These validities are different because the Project A concurrent validation

data utilizes the CTP criterion and the "McLaughlin" data set utilizes the SQT criterion. The

average AFQT for the "McLaughlin" data with 60 jobs was 0.504. Calculation of 7 ,, yields an

expected MPP due to selection alone of 0.225 for the Project A data sources, 0.2078 for the

"McLaughlin" data set with 18 jobs, and 0.214 for the "McLaughlin" data set with 60 jobs.

These constant values were subtracted from the MPP standard score values for the appropriate

conditions shown in Tables 19 and 20. The revised set of means representing only the effects

due to classification are shown in Tables 21 and 22.

In the next sections, the results shown in Tables 21 and 22 are discussed in terms of the

expected findings stated earlier. The discussion of the statistical analyses will be presented first

for Design A and then for Design B.

1. Design A: Number of Job Families

One of the primary expected findings of this research states that the magnitude of the

MPP scores will increase significantly as the number of job families increases from 6 to 9 and
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Table 21

Means of MPP Standard Scores for all Conditions in Design A for Effects

Due Only to Classification

DESIGN A-1: Classification-Efficient Job Clustering Method/Assignment with
FLS Composites

Project A Project A McLaughlin
Exp. Batt. ASVAB ASVAB

D1 D2 D3

Jl: 6 Job Families .239 .191 .070

J2: 9 Job Families .314 .245 .054

J3: 12 Job Families .367 .277 .078

DESIGN A-2: Empirical (CE Clustering) versus Army Operational Job Families/
Assignment with FLS Composites

Project A Project A
Exp. Batt. ASVAB

DI D2

M 1: Empiricala .314 .245
9 Job Families

M2: Operational .280 .214
9 Job Families

DESIGN A-3: Army Operational Job Families/Assignment with Aptitude Areas

Project A
Aptitude Areas

DI

M2: Operational .092
9 Job Families

'Values for Empirical conditions come directly from Design A-1.
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Table 22

Means of MPP Standard Scores for all Conditions in Design B for Effects

Due Only to Classification

DESIGN B: McLaughlin Data with 60 Jobs/Assignment with FLS Composites

Clustering Method

Empirical' Operational
Ml M2

Ji: 9 Job Families .266 .135

J2: 16 Job Families .331 .258

JB: 23 Job Families .374 .297

aClassification-efficient clustering method.
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then to 12 job families. On simple inspection of Table 21, it can be seen that the rank order of

magnitude of MPP scores fell in the hypothesized direction for two of the three data sources.

The statistical significance of these differences was addressed by performing a 3 x 3

repeated measures analysis of variance. The results from this analysis are presented in Table

23. Both main effects and the interaction between the data source factor and the job family

factor were significant (p < .0001). Because it was apparent that the "McLaughlin" data source

did not support the number of job families hypothesis, a separate 2 x 3 repeated measures

ANOVA was subsequently performed for only the Project A concurrent validation data sources.

Discussion of the results for the "McLaughlin" data will be presented in a later section on types

of criteria.

The results from the subsequent analysis on only the Project A concurrent validation data

sources are presented in Table 24. Once again, both main effects and the interaction between

the data source factor and the job family factor were significant. Thus, for the two Project A

data sources, the significant main effect of J allowed the null hypothesis of no difference

between the means for 6, 9, and 12 job families to be rejected with a high level of confidence

(p < .0001). The significant interaction term indicates that the two Project A data sources were

affected differently by the increase from 6 to 9 to 12 job families. Examination of the data

revealed that the Proj.A (Exp.Batt) data source resulted in slightly greater increases in MPP

from 6 to 9 to 12 job families than did the Proj. A (ASVAB) data source.

A second expected finding investigated in the research involving the number of job family

conditions predicts that the efficiency of classification will vary according to a negatively

accelerated function such that the increase in MPP from 6 to 9 job families will be greater than

the increase in MPP from 9 to 12 job families. From examination of the means in Table 21,

this hypothesis appears to hold for the Project A data sources. This hypothesis was statistically

tested with the use of paired-comparison t-tests for each of the Project A data sources. The

difference between each MPP value from 6 to 9 job families was compared to the difference

between each MPP value irom 9 to 12 job families. The null hypothesis states that the

difference between these two comparisons is zero. Confirmation of the hypothesis occurs if the

difference from 6 to 9 job families is greater than difference from 9 to 12. Thus, a one-tailed

t-test is appropriate for this situation.
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Table 23

Repeaed Measures ANOVA of MPP Standard Scores for Design A

Sources of SS df MS F p
Variation

D .,. soum, 1.823 2 0.9114 1381.85 <.0001
Error (d) 0.0250627 38 0.0006595

J# ofjob fmifiCA) 0.1650 2 0.0825 229.12 <.0001
Error (j) 0.013684 38 0.00036011

D x J 0.0831 4 0.0208 102.28 <.0001
Error (dj) 0.0154 76 0.00020309

Note. A two factor repeated measure design is described by Winer, Brown and Michels
(1991) p. 561. Error (d) equals Dx subj. w. groups.

74



Table 24

Repeated Measures ANOVA of MPP Standard Scores: Comparison

of Proi.A (Exp, Batt) and Proi.A (ASVAB) Data Sources for all

Job Family Levels

Sources of SS df MS F p
Variation

Deda,. so, 0.1438 1 0.1438 297.24 <.0001
Error (d) 0.0091942 19 0.0004839

ofjob familica) 0.2331 2 0.1165 489.16 <.0001
Error (j) 0.0090529 38 0.0002382

D x J 0.0087 2 0.0044 20.28 <.0001
Error (dj) 0.00818 38 0.0002153

Note. A two factor repeated measure design is described by Winer, Brown and Michels
(1991) p. 561. Error (d) equals Dx subj. w. groups.
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As predicted, for the Proj.A (Exp.Batt), the difference from 6 to 9 job families was

significantly greater than the difference from 9 to 12 job families, 1(19) = 3.29, pR < .003. For

the Proj.A (ASVAB) data source, the difference from 6 to 9 job families was also significantly

greater than the difference from 9 to 12 job families, J(19) = 3.12, p < .005. Thus, there does

appear to be evidence from these results to support the proposition that the efficiency of

classification varies with the number of job families according to a negatively accelerated

function.

2. Design A: Job Clustering Methods

Initially, one of the major expected findings of this research was that the CE method of

job clustering would result in significantly greater MPP scores than the SE method. Because

the SE job clustering method was not successful in producing job clusters that maximized

selection-efficiency, the SE algorithm was no longer a credible alternative and this hypothesis
was no longer worth testing. However, another major expected finding of this research stated

that an empirical method of clustering (i.e., the CE method) would result in significantly greater

MPP scores than the current U.S. Army operational job families. This hypothesis is testable

and is represented in Table 21 as Design A-2.

On simple inspection of Table 21, one can see that the operational MPP standard scores

(i.e., the results obtained on the 9 operational families) for Design A-2 are lower than the

empirical MPP standard scores (i.e., the results obtained for the CE families) for both data

source conditions. Table 25 provides the results for the repeated measures ANOVA of Design

A-2. Note that the main effects for the clustering methods factor and the data source factor are

both significant. Thus, there is support for the hypothesis that the empirical CE method of

clustering resulted in significantly greater MPP scores than the operational job family method.

Note that the interaction between data source and clustering method is not significant. From the

means in Table 21 for Design A-2, it is apparent that the differences between the empirical and

operational methods were virtually identical for both data sources eliminating any interaction

effect.

3. Design A: Type of Predictor Measure

The availability of the Project A concurrent validation experimental battery (20

experimental predictors added to the 9 ASVAB tests) allowed a determination of the effects on
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Table 25

Repeated Measures ANOVA of MPP Standard Scores for Design A-2

Sources of SS df MS F p
Variation

D(,. 0.0907 1 0.0907 252.23 <.0001
Error (d) 0.0068320 19 0.0003596

M(bm n 0.0209 1 0.0209 85.87 <.0001
Error (m) 0.0046182 19 0.0002431

DxM 0.00004 1 0.00004 0.11 <.7394
Error (din) 0.0071946 19 0.0003787

N=. A two factor repeated measure design is described by Winer, Brown and Michels
(1991) p. 561. Error (d) equals D x subj. w. groups.
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MPP of expanding the predictor space to include spatial, psychomotor, biodata, and interest

predictors. The use of the full set of experimental plus ASVAB predictors (29 tests) for job

clustering and assignment was compared to the use of only the 9 ASVAB tests. As discussed

earlier, the composition of the job families formed using the Proj.A (Exp.Batt) predictors shared

some similiarities to the job families formed using the Proj.A (ASVAB) predictors. In terms

of the resulting MPP scores after assignment, however, note from Table 21 that in all cases the

Proj.A (ASVAB) means are lower than the Proj.A (Exp.Batt) means. In addition, from the

repeated measures ANOVAs presented in Tables 24 and 25, it is apparent that this data source

factor is significant for all conditions in both Designs A-1 and A-2. Thus, there is evidence to

support the hypothesis that when assignment variables are based on all 29 Project A tests, MPP

will be significantly greater than when the assignment variables are based on the standard 9

ASVAB tests.

4. Design A: Type of Criterion Measure

The purpose of matching the same 18 jobs in the Project A data and the "McLaughlin"

data for Design A was to directly compare the effects on classification efficiency of using more

routinely and inexpensively collected criterion (i.e., SQTs and training grades) with the specially

designed Project A criteria (i.e., CTP). It was hypothesized that there would be no significant

difference in MPP scores due to the use of assignment variables based on the Project A criterion

and the "McLaughlin" criterion.

As Table 21 shows, the mean MPP scores after removal of selection effects are much

lower for the "McLaughlin" data condition than for the Project A (ASVAB) condition. Table

26 shows a 2 x 3 repeated measures ANOVA of the MPP standard scores comparing the Proj .A

(ASVAB) and "McLaughlin" data sources. These two data sources were isolated for comparison

across the job family conditions because they both share the same predictors (i.e., the ASVAB)

but differ in terms of criterion measures. Table 26 shows that contrary to the stated hypothesis

of no difference, there was a significant difference between the data sources.

An additional prediction was also stated to allow for statistically significant differences

between the two data sources (Project A concurrent and "McLaughlin"), if the conclusions

reached about the other expected findings in this research were the same with both data sources.

In other words, if the conclusions about the effect on classification efficiency of increasing the
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Table 26

Repeated Measures ANOVA of MPP Standard Scores: Comparison of

Proj.A (ASVABW and "McLaughlin" Data Source for all Job Family Levels

Sources of SS df MS F p
Variation

D(dl,& =) 0.8696 1 0.8696 955.87 <.0001
Error (d) 0.0172847 19 0.0009097

J(# of fmaim) 0.0451 2 0.0226 65.06 <.0001
Error (j) 0.0131771 38 0.0003468

D x J 0.0374 2 0.0187 91.70 <.0001
Error (dj) 0.0077492 38 0.0002039

Note. A two factor repeated measure design is described by Winer, Brown and Michels
(1991) p. 561. Error (d) equals Dx subj. w. groups.
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number of job families were the same for both "McLaughlin" and Project A concurrent data,

but the "McLaughlin" MPP values were somewhat lower overall, this prediction could still be

supported.

Unfortunately, even this second hypothesis did not hold. From Table 21, one can see

that the "McLaughlin" data source resulted in a reversal of MPP values from 6 to 9 job families.

Table 27 presents a repeated measures ANOVA for just the "McLaughlin" data source across

all three job family levels. Note from Table 27 that although the mean differences across the

job family conditions (see Table 21) appear very slight, they were statistically significant.

Additional statistical comparisons of the job family levels for the "McLaughlin" data

revealed that the 6 job family condition (1) was not significantly different from the 12 job

family condition (13), F(I,19) = 1.43, p < .2468. However, the 9 job family condition (12)

was significantly different from both the 6 job family condition, E(1,19) = 9.28, p < .0066,

and the 12 job family condition, E(1,19) = 33.66, p < .0001.

These Design A results are unfortunate in that they do not provide preliminary evidence

of the usefulness of the "McLaughlin" validity data with the SQT criterion for the structuring

of jobs into families. However, the usefulness of Design B with its 60 job permits the

examination of important methodological issues, even if we cannot argue for the immediate

usefulness of SQT validity data as the primary basis of a restructuring of Army job families.

The results found for Design A with only 18 jobs for the "McLaughlin" data could be caused

by the interaction of a variety of factors. First, with only 18 jobs the somewhat poorer

psychometric properties of the SQT criterion (e.g., criterion-referenced, lack of discriminability)

compared to the CTP criterion could have contributed to the inconsistent findings. Recall that

there was an unexpected reversal of the results for the intercorrelations among the LSEs, r, for

the "McLaughlin" data with 18 jobs. These reversals in the intercorrelation magnitudes due to

the psychometric properties of the data could be an explanation for these inconsistent findings.

From Brogden's (1959) formulation it is known that r is an important component in the

estimation of MPP. Thus, although Horst's differential index, 1-d, and the predictive validity,

R2, indicated that MPP should increase as the number of job families increased, the average

intercorrelations among the LSEs across the conditions indicated otherwise.
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Table 27

Repeated Measures ANOVA of MPP Standard Scores for the "McLaughlin" Data Source

Across Job Family Levels

Sources of SS df MS F p
Variation

J( fjbfmi) 0.0063 2 0.0032 10.08 <.0003
Error (j) 0.01188474 38 0.00031276

SError (j) equals Jx subj. w. groups.
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Second, it is important to recall that in Design A, although the "McLaughlin" data with

the SQT/training criterion was used for job clustering and calculation of assignment weights,

evaluation of assignment and calculation of the MPP results was based on the designated

population values. This design was used to carefully control the error that results from the use

of the same sample for computing weights for assignment and evaluation. The designated

population for Design A was the Project A concurrent validation data with the full set of 29

predictors and the CTP criterion. Thus, Design A was based on the assumption that the Project

A population parameters for both predictors and criterion represented "truth" in the population.

Using different content (e.g., CTP criterion) to evaluate the effect of assignment variables

obtained using the "McLaughlin" data (with the SQT/training criteria) is the major factor

contributing to the overall low MPP values obtained using the "McLaughlin" data as the source

of assignment variables in Design A.

Finally, because of the desire to have the same 18 jobs included for "McLaughlin" data

source condition as were contained in the Project A data for Design A, some compromises were

made that may have influenced the results. Three out of the 18 jobs were included that had end-

of-course training scores as criterion instead of SQT scores. Even though every attempt was

made to equalize these two criterion sources, the training scores are known to have even poorer

psychometric properties than the SQT criterion. In Design B, these same three jobs with the

training criterion were also included, but there were an additional 57 jobs instead of 15 jobs so

that the influence of these three jobs should not be as great.

The conclusions from Design A regarding SQT apply to a methodological study that

assumes that the concurrent validation Project A CTP criterion represents "truth" in the

population. In Design B, we use the SQT to investigate methodological hypotheses because it

was the best sample of validities available over a large number of jobs. Alternatively, we could

have constructed values for a validity matrix by judgment and by aggregating data from several

other studies. Such an approach could have been defended for this methodological study.

However, we wanted a matrix of validities which would behave as much as possible like real

validity coefficients. In addition, in Design B, remember that the SQT criterion was used for

computing both assignment weights and evaluation weights. Under these circumstances, we

believe that the validity matrices based on the SQT criterion have the same statistical
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characteristics (although on the average somewhat lower) as would similar validities, if available

based on the CTP criterion. Therefore, the findings from Design A did not deter us from

proceeding with a similar methodological study for Design B using the SQT criterion.

5. Design A: FLS Assignment versus Aptitude Area Assignment

The present research presented an opportunity to compare the use of FLS composites for

assignment directly to the use of the aptitude area composites. Table 21 (Design A-3) gives that

part of the MPP score remaining after that part of the total MPP due to selection has been

subtracted for the condition in which entities were assigned to the 9 operational job families with

the use of the Army aptitude area composites. Note that this value was very low indicating very

little classification potential when the current aptitude area composites are used for assignment.

The expected finding stated that any condition involving FLS assignment would result in

significantly greater MPP scores than assignment based upon the Army operational aptitude area

composite. By comparing the single cell result in Design A-3 with the lowest MPP using

Project A data from either of the other two designs (A-1 or A-2), it is possible to conclude that

any condition involving FLS assignment is better than aptitude area assignment. The lowest

MPP score for either Design A-1 or A-2 using Project A data resulted when the Proj.A

(ASVAB) data was used for FLS assignment to the 6 CE job families. As expected, assignment

with FLS for this lowest condition (M = .191) was significantly better than assignment with

aptitude area composites (M = .092), F(1,19) = 680.18, p < .0001. Thus, there was

substantial support from these results for the hypothesis that FLS assignment resulted in

significantly greater MPP scores than aptitude area assignment.

6. Design B: Number of Job Families

From Table 22, it is apparent that the magnitude of the MPP scores increased as the

number of job families increased from 9 to 16 and then to 23 job families. The statistical

significance of these differences was addressed by performing a 2 x 3 repeated measures analysis

of variance. The results from this analysis are presented in Table 28. Both main effects and

the interaction between the clustering method factor and the job family factor were significant

(p < .0001). The significant interaction term indicates that the two clustering methods were

affected differently by the increase from 9 to 16 to 23 job families. Examination of the data
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Table 28

Repe=ald Measures ANOVA of MPP Standard Scores for Desgin B

Sources of SS df MS F p
Variation

Dcch,,ni.o&) 0.2633 1 0.2633 6297.30 <.0001
Error (d) 0.0007945 19 0.0000418

J(# Of A fmaii) 0.3814 2 0.1907 3289.39 <.0001
Error (j) 0.0022031 38 0.00005798

D x J 0.0211 2 0.0105 330.65 <.0001
Error (dj) 0.00121233 38 0.0000319

Note. A two factor repeated measure design is described by Winer, Brown and Michels
(1991) p. 561. Error (d) equals Dx subj. w. groups.
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revealed that the use of the operational clusters resulted in greater increases in MPP from 9 to

16 job families than did the empirical clusters.

Similar to Design A, it was expected that the efficiency of classification would vary with

the number of job families according to a negatively accelerated finction such that the increase

in MPP from 9 to 16 job families would be greater than the increase in MPP from 16 to 23 job

families. From examination of the means in Table 22, it appears that there is support for this

hypothesis. A paired comparison t-test was performed for each of the clustering methods

(empirical vs. operational). The difference between each MPP value from 9 to 16 job families

was compared to the difference between each MPP value from 16 to 23 job families. Once

again, a one-tailed t-test was used for this statistical test.

As predicted, for the empirical CE clustering condition, the difference from 9 to 16 job

families was significantly greater than the difference from 16 to 23 job families, 1(19) = 6.87,

g < .0001. For the operational clustering condition, the difference from 9 to 16 job families

was also significantly greater than the difference from 16 to 23 job families, 1(19) = 18.97, p

< .0001. Thus, once again, there does appear to be evidence from these results to support the

proposition that the efficiency of classification varies with the number of job families according

to a negatively accelerated function.

7. Design B: Job Clustering Methods

It was expected that the empirical, classification-efficient method of clustering would

result in significantly greater MPP scores than the operational methods of clustering (aptitude

areas, CMF categories, and a combination of these two group'ings). Upon simple inspection

of Table 22, it is apparent that for all job family conditions the empirical MPP scores were

greater than the operational MPP scores. The repeated measures analysis of variance presented

earlier in Table 28 also provides the statistical test for this set of conditions. Note from Table

28 that the main effect for the clustering methods factor was significant (p < .0001). The

interaction between the clustering methods factor and the job family factor noted earlier can be

explained further by noting that the differences in mean MPP between the empirical and

operational methods were fairly consistent for the 16 and 23 job family conditions (i.e., .073

and .077, respectively). However, the differences in mean MPP between the empirical and

operational methods for the 9 job family condition were almost double at .131. This indicates
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that the operational 9 job families based upon the aptitude areas performed even more poorly

than expected resulting in an interaction effect.

8. Effect of Sample Size

This study also contributes to our knowledge of the effect that analysis sample size has

on MPP computed in independent samples. This effect is true for research designs in which the

regression weights for FLS composites are computed in the analysis sample and WPP computed

in one or more cross-samples. This knowledge is based on inclusive information that relates to

only one condition of Design A - the condition in which FLS experimental composites are the

AVs to optimally assign entities to 12 CE empirically formed families.

Design A used analysis samples to form AVs which could be characterized as moderate

in size. A companion study by Whetzel (1991) exists in which the analysis sample used to

compute the AVs for use in a comparable condition is infinitc'y large. The use of the designated

population as the analysis sample implies that the analysis sample is infinitely large. We wish

to estimate the correction factor which should be applied to values of MPP computed using

analysis samples of infinite size in order to estimate what the value of MPP would have been

if the analysis samples had been of the size used in Design A.

Whetzel (1991) provided an MPP value for the results of a simulation in which the close

equivalent of FLS-experimental composites serve as AVs for assignment to 11 out of the 18

jobs. These 11 were selected because they most completely spanned the joint predictor-criterion

space defined by 11 of the 18 jobs. Therefore these 11 jobs would be expected to provide a

higher potential classification efficiency than obtained in the 12 job family condition of Design

A. The MPP provided from classification effects, that is, after the component of MPP due to

selection is removed, should also be larger since the Whetzel (1991) study used a more efficient

selection variable ("g" instead of AFQT).

The MPP standard score obtained in Whetzel (1991) for a somewhat comparable

condition to the Design A condition described above is .722. This contrasts with the MPP

standard score for the Design A condition of .592 yielding a difference of .130 and a correction

factor of 180. As noted above, this correction factor is an overestimate for the Design A data

on two counts. Thus, we estimate that the proper value of this correction factor lies between

.10 and .15. Since the empirical samples of Design B have an average size of over twice those
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of Design A and the AVs corresponding to the families are based on a division of 60 jobs among

the 11 or 12 families, instead of the division of 18 jobs, this estimate obtained from Design A

must be an over estimate of the correction factor for Design B. Considering all of the above,

we estimate that the correction factor for Design B (i.e., the multiplier to be applied to the

obtained MPPs to provide unbiased estimates of MPP), could conservatively be estimated to fall

between .05 and .10. This correcLon factor could be applied to the MPP values of Table 22 to

adjust for the possible effects of correlated error between assignment and evaluation variable

(even though these values are cross-sample results).

C. Estimating the Practical Significance of Gains in MPP

Finding statistical significance permits consideration of the practical significance of the

MPP values across the various experimental conditions. It is possible to calculate percentage

gains in MPP for various conditions of interest from the mean MPP values presznted in Tables

21 and 22. Actual gains in MPP standard scores also can be translated directly into dollar

estimates of the value of increased productivity using the cost and benefits analyses of Nord and

Schmitz (1989, 1991).

Nord and Schmitz (1989, 1991) conducted a utility analysis of the merits of alternative

manpower policies for the U.S. Army. Their goal was to obtain realistic estimates of the costs

and benefits of changing job entry standards and allocation procedures. To determine dollar

estimates, Nord and Schmitz (1989, 1991) used a net present value (NPV) model for

performance valuation which is a refinement of the approach developed by Brogden (1951) and

developed further by many other personnel testing researchers (Boudreau, 1983; Cascio, 1987;

Hunter & Schmidt, 1982).

Nord and Schmitz (1989, 1991) found that optimal assignment using FLS prediction

(based on aptitude areas rather than ASVAB test scores) resulted in a .143 increase in mean

predicted performance over assignment using the current Army selection and classification

system. The net economic value of this gain was estimated to be $262 million for one year.

This estimate will be used to provide a basis for extrapolating utility estimates from the results

of the present study.
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In using this estimate for the present study, it is assumed that the dollar values are linear

throughout the range of performance values. It is also important to point out that Nord and

Schmitz's costing estimates were based on 1988 costs. Thus, the $262 million would be a slight

underestimate of today's value. However, Nord and Schmitz based their estimates on 1984

entry-level accessions of 120,000 per year. This rate of accession has actually declined over the

past several years. This would suggest that the $262 million is a slight overestimate of today's

values. For the purposes of approximating economic values for the present research, it will be

assumed that these two factors tend to balance one another and that the $262 million is a good

estimate for extrapolation purposes.

Interpreting gains in MPP with dollar value estimates is important because it gives some

concrete meaning to the increases observed in MPP values. Dollar value estimates provide a

scale for comparison of alternative policies and comparison to other research in this same area.

The dollar values that are given, however, should not be considered absolute expected increases

since each organization needs to determine its own dollar values. Although these dollar value

estimates were extrapolated directly from the comprehensive utility analysis completed by Nord

and Schmitz (1989, 1991), it is important to point out that there were certain operational

constraints that were not taken into account in this simulation that could affect the utility benefits

to the Army. For example, in this simulation, equal quotas per job were used instead of

operational quotas needed by the Army, and each job was considered to have equal value to the

organization. In addition, it was not possible to take into account operational constraints such

as sex (certain Army jobs are not open to women and both combat support and combat service

support units have quotas for women soldiers) and availability of training slots. Also, this

simulation assumed that individuals would accept the job to which they have been optimally

assigned. Since the Army is a volunteer system, this is an operational problem that must be

confronted in setting up an efficient selection/classification system. This last problem is

mitigated somewhat with the use of job families. Assignment to job families and then

consideration of preferences in the further assignment to the jobs within these families could

allow for enough freedom of choice to satisfy many potential recruits.

Table 29 gives the differences and percentage gains between the average MPP scores

from Tables 21 and 22 for all of the major comparisons for the hypotheses stated earlier. It is
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Table 29

Differences and Percentage Gains in MPP scores for all Major Compaisons

DESIGN A

Project A Project A
Number of Experimental Battery ASVAB
Job Families Difference % Gain Difference % in

Increase from:

6 to 9 .075 31.3 .055 28.7

9 to 12 .053 16.9 .032 12.9

6 to 12 .128 53.5 .086 45.3

Project A Project A
Clustering Experimental Battery ASVAB
Method Difference % Gain Difference %

Empirical over
Operational .034 12.0 .031 14.4

Average Across
Job Families

Type of Predictor Difference % Gain

Project A (Exp.Batt) over
Project A (ASVAB) .069 29.1

Project A
FLS versus ASVAB
Aptitude Area Assignment Difference % Gain

Empirical w/FLS over
Operational w/AA .153 166.3

Operational w/FLS over
Operational w/AA .122 132.6

(continued)
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Table 29 (continued)

DESIGN B

Number of Empirical Operational

Job Families Difference % ai Differenc % ai

Increase from:

9 to 16 .065 24.4 .123 91.1

16 to 23 .043 13.0 .039 15.1

9 to 23 .108 40.6 .162 120.0

Average Across
Job Families

Clustering Method Difference % Gain

Empirical over
Operational .094 40.9
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apparent that increasing the number of job families has a significant effect on MPP scores. For

Design A, the percentage gains from increasing the number of job families from 6 to 9 ranged

from 28% to 31%. The percentage gains from increasing the number of job families from 9 to

12 ranged from 12% to 17%. For Design B, increasing the number of job families from 9 to

16 resulted in gains of 24.4% in MPP when CE clustering was used, and gains of 91.1% when

the operational clusters were used. Increasing the number of job families from 16 to 23 resulted

in gains of 13 % in MPP when CE clustering was used, and gains of 15.1% when the operational

clusters were used.

From Design A, it is possible to address the operational question of the dollar value that

would be "lost" to the Army if the number of job families was decreased from 9 to 6.

Decreasing the number of job families has been the recommendation of recent research in the

Army (McLaughlin et. al, 1984). The results from the present research show that, for the

Proj.A (Exp.Batt) condition, the difference of .075 between 9 and 6 job families represents

approximately $137 million dollars per year that could be lost by decreasing the number of job

families. For the Proj.A (ASVAB) condition, the difference of .055 between 9 and 6 families

represents approximately $100 million dollars per year lost.

It is also possible to address the question of how much improvement the Army could

expect by increasing the number of job families. The results from Design B provide the most

dramatic illustration of the dollar value improvements possible for the Army. For example, note

that if the current nine operational job families (aptitude areas) were abandoned in favor of 16

operational job families (combination of aptitude area and CMF) a percentage gain of 91.1%

could be expected which translates into a $225 million dollar per year improvement.

Alternatively, if the current nine operational job families (aptitude areas) were abandoned in

favor of 23 operational job families (CMF categories) a gain of 120% could be expected which

translates into a $297 million dollar per year improvement. Furthermore, if the Army utilized

the CE method of clustering developed in this research to cluster jobs into 23 job families, the

expected dollar value improvement would be approximately $438 millon dollars per year over

the current 9 operational job families.

Another comparison of interest is the gain in MPP that can be attributed to using the

empirical CE method of clustering instead of the operational methods currently used by the
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Army. From Design A, the results showed gains of only 12% to 14% for the empirical nine

job families over the operational nine job families. From Design B, with the much more

realistic and broader range of job families, the results showed gains of 40% when averaged

across job families. This 40% gain translates into a $172 million dollar per year improvement

to the Army that could accrue from using a CE method of clustering for forming job families.

Table 29 also shows the difference between the two types of predictors that were part of

Design A. The difference among the types of predictors suggest that if the Army were to adopt

an expanded set of experimental predictors added to the ASVAB instead of the ASVAB alone,

they could expect MPP improvements of .069 representing a 29.1 % gain in MPP. This gain

translates into an improvement worth $126 million per year.

Finally, from the section comparing FLS assignment to aptitude area assignment in Table

29 (only Design A), it is apparent that FLS assignment is substantially better than aptitude area

assignment. The results show that if the Army were to cluster jobs into nine job families using

a CE method and combine this with FLS assignment instead of their current system (nine

operational job families with AA assignment), their estimated average increase in MPP would

be .153 representing a 166.3% gain in predicted performance. This MPP gain translates into

an improvement worth $280 million dollars per year. The results in Table 29 also show that

even if the Army were to keep their current nine operational job families but change to FLS

assignment using the full ASVAB, their estimated average increase in MPP would be .122

representing a 132.6% gain in predicted performance. This MPP gain translates into an

improvement worth $224 million dollars per year.

In summary, this section demonstrated that many of the statistically significant differences

among the MPP scores also represented substantial practical improvements in MPP. Some of

the greatest improvements come from increasing the number of job families and from using FLS

instead of aptitude area assignment. Zeidner and Johnson (1989b) predicted that use of FLS

assignment would provide the greatest improvements in MPP scores with the second greatest

improvements occurring by increasing the number of job families. They estimated that

increasing the number of job families would provide a 50% improvement above the benefits

from FLS assignment. In fact, the current study results suggest that this figure is actually much

greater. If the Army were to utilize the best condition from Design A of this study (i.e., a CE
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clustering method to increase their number of job families to 12, the full set of experimental

predictors, and FLS assignment) there would be a 71.3% improvement in MPP compared to the

use of the current 9 operational job families, the ASVAB, and FLS assignment. If the Army

were to utilize the best condition from Design B of this study (i.e., a CE clustering method to

increase their number of job families to 23, the ASVAB, and FLS assignment) there would be

a 177% improvement in MPP compared to the use of the current 9 operational job families, the

ASVAB, and FLS assignment. These improvements can be translated into added gains ranging

from $280 to over $400 million per year over and above the benefits accrued from the addition

of FLS assignment procedures.
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IV. DISCUSSION AND CONCLUSIONS

A. Implications For DAT

1. Refinement of DAT

Differential assignment theory (DAT) was first proposed by Johnson and Zeidner (1990,

1991) and Johnson, Zeidner, and Scholarios (1990) as the conceptual basis for initiating research

and interpreting results from research intended to improve the efficiency, measured in terms of

MPP, of a personnel classification system. The concept of DAT is derived from the integrative

review of personnel classification literature, with special emphasis on the contributions of

Brogden and Horst, combined with the systematic development of methodologies for improving

classification efficiency, as described in Johnson and Zeidner (1990, 1991).

Several fundamental concepts form the basic assumptions for DAT. The first and third

(as first presented) hold that, in the general case, there is a complex set of principles defining

separate approaches for optimizing either the selection or classification procedures. There is an

exception for the special situation where FLS composites based on complete information are used

as both selection and assignment variables for each job family, each job family consists of a

single job, and a LP algorithm is used to optimally and simultaneously select and assign entities

to jobs (the MDS algorithm). All deviations from this special situation where the same test

composites and job families are optimal for both selection and classification requires that a

decision be made as to whether it is desired to maximize the effectiveness of selection or

classification.

The second concept of DAT maintains that utility models, where the object is to

maximize the benefits less the costs, provides the best approach for evaluating alternative

policies and procedures for selection, classification or placement, and assignment of personnel

to jobs.

The fourth concept argues that computer technology has reached the state where it is

practical to implement any selection and assignment strategy and/or algorithm that can be shown

to provide a useful gain in MPP.
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Additional basic concepts of DAT could be derived from an examination of the examples

of DAT principles provided by Johnson and Zeidner (1990, 1991). For example, it appears that

DAT assumes a non-trivial degree of multidimensionality in the joint predictor-criterion (JP-C)

space despite the inevitable presence of a strong general cognitive ability factor, "g", and the

high level of credibility of several other validity generalization concepts often associated with

the traditional general factor theorists. It should be emphasized that there is no inconsistency

between DAT and validity generalization theory as originated by Mosier (1951) or the more

recent literature on validity generalization as it pertains to selection efficiency or the utility of

selection.

DAT provides a basis for optimism in that it argues for the feasibility of designing,

developing, and implementing personnel classification and assignment systems far superior to

the existing operational systems. We believe that most operational classification systems

developed or modified since 1980 were designed and/or evolved in the pessimistic belief that the

dimensionality in the JP-C space was small (even to the point of unidimensionality) and that the

weights utilized in FLS composites lacked adequate stability to permit the desir of an effective

personnel classification system. Thus, the optimistic belief that efficient personnel classification

is attainable is also an attribute of DAT.

Several DAT principles are supported by the results of this study. The principles

confirmed include: (1) the effectiveness of using FLS composites as assignment variables (AVs)

in place of unit weighted composites designed to maximize predictive validity; (2) the increase

in MPP as the number of job families is increased; and (3) the further increase in MPP as

improved job family structure raises FLS composite validities and reduces FLS composite

intercorrelations.

The findings of this study will be integrated with those of a number of companion studies

to further refine the basic concepts and principles of DAT. For example, in the present study

we did not anticipate the extent to which validities were increased by a job clustering algorithm

designed to sustain the average differential validity remaining in the set of job families as jobs

were agglutinated into the desired number of job families. We were similarly surprised, in a

companion study in which we did not anticipate the smallness of the gain in MPP attributable
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to the differing validities of a single predictor across jobs. Each of these studies has both

confirmed and enriched DAT.

2. Implementation of DAT

Several DAT principles are supported by the results of this study. These findings point

to very high potential benefits obtainable from a major overhaul of the Army's selection and

classification system. An effective redesign of this system should start with the acceptance of

the maximization of MPP as an over arching objective.

The design of an effective selection and classification system requires the consideration

of many practical issues outside the scope of DAT. Tradition and perceived necessity provide

a number of entrenched solutions to operational problems concerned with matching job

preferences of recruits, distribution of personnel across MOS to meet quality standards,

providing vocational opportunities for females, minorities and underprivileged recruits, and the

use of unit (or at least positive) weights for the tests in AVs. We believe DAT would

considerably impact on a reconsideration of many policy issues. Although this study is not

directly focused on these issues, we recognize that the full implementation of the results of this

study requires the reconsideration of these policies.

Zeidner and Johnson (1989b, 1991b) predicted that use of FLS composites instead of AAs

could increase the potential MPP obtainable from a classification system by 100 percent. The

present study confirms this prediction by showing that the gain obtainable from optimizing AVs

is 133 percent - if initial assignments could be accomplished using an LP algorithm without

consideration of individual preferences. We still lack information as to the effect that a

concerted effort to persuade recruits to accept suitable assignments (i.e., assignments to jobs in

which their predicted performance is relatively high) would have on recruiting costs. Until

recently many thought that very little utility was lost through permitting preferences (often based

on no information, or worse, serious misinformation about Army jobs) to be the primary

determinant of initial assignments. Evidence in this and related studies show that a great deal

of utility is lost through failure to make more use of optimal assignment information.
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B. Operational Implications

1. Broad Conclusions

Our data provide compelling evidence that the existing operational test composites could

be reconstituted to substantially improve classification efficiency. The evidence also strongly

supports the usefulness of the existing ASVAB as a classification tool. The percentage gain

obtainable from adding all 20 of the Project A experimental measures to the existing tests of the

ASVAB is a 31 percent increase in classification efficiency. A 299 percent gain over the

operational job families and composites is achieved by using FLS composites, optimal

assignment, 12 CE job families, and the experimental Project A measures.

The 31 percent gain from adding new Project A tests is substantial when compared to the

gains obtainable from making changes, one at a time, to the same baseline condition used to

compute this gain. If we use FLS composites for 9 operational job families as our baseline

(MPP = .214), we show a gain of 31 percent by only adding the 20 experimental tests, a gain

of 15 percent by only changing to 9 job families based on empirical clustering, and a gain of 14

percent by changing to 12 job families based on empirical clustering.

A number of general conclusions can be drawn by examining these comparative gains.

First, we see a higher classification efficiency inherent in the ASVAB than is usually posited.

Second the failure to obtain even higher differential gains from the addition of new experimental

variables to the ASVAB probably reflects the relative lack of emphasis given to classification

efficiency by test development researchers over the past two decades. Third, the total gain of

299 percent achieved by implementing all of our proposed changes in the operational system,

including the additional differential validity provided by Project A experimental tests, reflects

a potential that cannot presently be fully realizable in an operational system constrained by

current policies, but definitely points to a route that should eventually lead to very substantial

gains in MPP.

While the procedures used to form the existing operational job families are clearly not

optimal, they are much more effective than are the corresponding AA composites. Even the

Career Management Field (CMF) clusters provide considerable improvement in classification

efficiency when used to expand the number of job families to which assignment is accomplished.
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It would appear that job families which meet other administrative and training requirements apart

from personnel classification, such as CMF, can be effectively utilized in a personnel

classification system.

The authors of the principle technical report on Project A (McLaughlin et al., 1984)

concluded that an empirical job clustering process was inherently ineffective because of its

dependence on presumed unstable regression weights used to form assignment variables (AVs).

The findings of the present study, however, show that even when sampling error is allowed to

take its full toll, the MPP obtainable in independent samples is greatly improved by the use of

empirical clustering of jobs into families and the representation of these families by FLS

composites.

A major reconstitution of the job families in the Army's classification system should be

based on all available validity data, as well as on information available from job analyses. We

do not wish to suggest that the job family structure decisions should be based on the limited data

utilized in the present methodological study. However, we are confident that the major

conclusions of this study will be confirmed as additional data are collected and analyzed using

simulations to obtain MPP values.

2. Policy Issues

A number of policy issues pertaining to personnel classification and assignment must be

resolved before a new system incorporating DAT concepts and principles can be implemented.

A number of these issues are noted below.

a. The g" Controversy. Does the poor classification efficiency available from the

existing operational AAs mean that the Army should, as some validity generalization

proponents contend, change to a system which uses a single measure of cognitive ability,

plus measures of psychomotor ability and clerical speed?

b. The Feasibility of Implementing LP Algorithms. Can optimal assignment

algorithms be implemented in the current recruiting market? If not, can cut scores be

raised in such a way as to provide a similar level of MPP?

c. Using FLS Composites as AVs. Can FLS composites with both positive and negative

weights be implemented? If not, can a comparably effective two-tiered strategy, in

which the second tier uses composites with all positive weights, be implemented?
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d. The Substitution of "g" For AFQT. Can a general FLS composite be substituted for

AFQT as the selection instrument?

e. Quality Distribution. Can quality distribution policies be aliered to use predicted

performance instead of AFQT as the measure of personnel quality?

f. Optimal Simultaneous Selection And Assignment. Must the Army continue to use

a two-stage selection and classification system in which selection and classification is

accomplished in separate successive stages, instead of the more effective and equitable

single stage system in which selection and classification is accomplished simultaneously?

Such a single stage algorithm is described by Johnson and Zeidner (1990, 1991). It is

called the multidimensional screening (MDS) algorithm. Future plans to make use of

MDS should affect the choice of a job clustering algorithm for the design of a new

system.

g. Assessing Future Requirements. Can the quality requirements of future weapon

systems be assessed in terms of FLS composites or factor composites used in the second

tier instead of through the use of AFQT?.

C. Accomplishing Operational Changes

1. Options for the CE Job Clustering Algorithm

We believe our CE clustering algorithm and the FORTRAN program implementing this

algorithm to be a major product of this study. The flexibility built into this algorithm for

including additional options adds to its value. There are a number of options which we believe

would add to the usefulness of this algorithm for making changes in operational classification

systems.

We first describe an earlier, untested, concept that had a number of features relevant to

the operational use of a job clustering algorithm. We then describe additional features we

believe have practical value in the reconstitution of operational job families, and describe how

these features could be provided as options to our CE clustering algorithm.

A classification-efficient job clustering method which was considered, but not selected

for implementation in the present study, has two stages. Kernels, consisting of one or more
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jobs, for a desired number of job families are selected during the first stage. In stage 2, the

remaining jobs are then distributed to one of these kernels (established job families) in such a

way as to maximize 1L. Since MOS selected to initially define a family (that is, the kernel)

remain in that family throughout the clustering process without being immersed (agglutinated)

into any other family, we believe this second stage would be particularly applicable to the

refinement of operational job families.

For Design A, the initial 6 (or 9, or 12) job families were to be identified as the set of

6 (or 9, or 12) MOS, out of the 18 MOS in the data, which as a set of job families (one job to

a family) would yield the highest value for .d. Applying this concept to an operational situation

the initial (kernel) job families would instead be provided by a small number of MOS which,

based on all available information, appear to be located near the center of job families which

span the joint predictor-criterion space (with as much distance between the kernels as can be

obtained). It may be desirable to include other career management considerations in the decision

process that yields the set of kernels.

The adding of further jobs to the job family kernels is accomplished sequentially, with

all unassigned jobs on which adequate data is available being considered during each cycle of

the algorithm. Only one unassigned job is selected for inclusion in a job family during each

cycle. The job making the greatest overall contribution to H. by being agglutinated into that

family becomes a member of that family, and the remaining unassigned jobs then become

candidates for selection in the succeeding cycles.

Our CE job clustering algorithm would have more use in the redesign of operational job

families if the algorithm was modified to provide two additional options, each permitting one

or more alternative approaches to the forming of job families. The first of these options is

sufficient to accomplish the job clustering objectives of the alternative algorithm (considered but

not programmed and tested) described above. The two options together permit an efficient use

of our CE algorithm for clustering jobs into a set of families in which no families lack sufficient

validity data to provide for stable regression weights in the corresponding FLS composites.

Without modifying our CE algorithm we could incorporate a designated set of jobs into

prescribed job families to form the kernels of job families that are desired for administrative

reasons or, based on prior data and experience, are judged to have similar aptitude requirements.
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We could then use our unaltered CE algorithm, as applied in this study, but we would probably

prefer to use our algorithm with one or both of the proposed options.

Option one adds the capability of designating some jobs or job families as ineligible for

agglutination with each other. These designated families are prevented, by option one, from

losing their identity through being agglutinated with each other or with families containing more

than a stipulated number of jobs.

Option two requires a stipulated sample size for the validity data associated with each

family resulting from the agglutination of a pair of jobs and/or job families. The implementation

of this option in our algorithm can be accomplished during the examination of the D matrix in

each cycle. As the elements in each D matrix are examined (searching for the smallest cell

value) for selecting the pair of jobs and/or job families that would be most appropriate for

agglutination, the combined N associated with each cell of D is tested and a cell is not

considered for selection unless the combined N of the associated pair exceeds the prescribed N.

The preferred procedure for using this option would be w first, as stage 1, obtain a

solution (a set of job families) using the unaltered CE clustering algorithm. An F matrix in

which the rows represent the job families obtained in this initial solution, with those families

based on inadequately sized validity samples shredded into their constituent jobs, is then

constructed. In stage 2, this revised F matrix is then used as input to the CE clustering

algorithm with both the first and second options activated. The succeeding cycles of stage 2,

in accordance with option 1, would then agglutinate the remaining jobs with each other or with

the job families retained from stage 1. Since, in accordance with option 2, only the individual

jobs and the specified job families now (after stage 1) have large enough validity samples to be

eligible for agglutination, the jobs cannot be agglutinated with each o'her and are instead

distributed among the job families identified in stage 1 in such a way as to maximize IL/m. The

end result would be a set of job families in which all the job families have adequate validity data

to permit the forming of stable AVs, while using the proven efficiency of our CE clustering

algorithm for providing a high value of Rd.
2. Redesigning the Personnel Classification System

Zeidner and Johnson (1989b, 1991b) proposed a sequence of changes in the design of

operational systems for the selection, classification and initial assignment of new personnel.
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They assumed that the adoption of the use of FLS composites as AVs was the source of the

largest potential increase in MPP, and probably the easiest to incorporate in an operational

system. The present study shows that the reconstitution of job families by increasing both the

quantity and quality of job families used in the classification process, can provide a comparable

gain in MPP.

The results of this study support the conclusion that an increase in the number of job

families for classification purposes would be economically profitable even if the structure of the

sets of families has been created for some other purpose such as career ladder management or

management of training. The immediate increase in number of job families, in conjunction with

improved aptitude area composites for each family, could greatly increase the MPP resulting

from the classification process. This expected increase is so great that we are less certain than

we once were that the shredding out of the nine Army job families should await the adoption of

FLS composites as AVs.

The four methodological studies concerned with the measurement and improvement of

classification efficiency suggested in Zeidner and Johnson 0989), plus two additional ones in

process of being initiated, should be completed by the GWU research team prior to 1993. We

fully expect that DAT will be extensively expanded and refined by then and the operational

methodology available for the redesign of selection and classification systems will also be

expanded, validated, better described, and better understood than at present. Research now in

progress on related topics such as synthetic validity should add to the improvement of technology

on personnel classification. We are hopeful that we will see the start of a new era in which

personnel classification receives the attention it deserves.

We believe the gains in MPP afforded by the CE algorithm for the formation of job

families evaluated in this study are great enough to justify future use of this algorithm as a

research tool when further validity data are acquired. We also believe this algorithm should

be used to provide one source of information to be combined with judgment in the

formulation of operational job families.

While synthetic validity might appropriately be used in the context of predictive validity

for designing a selection system, it is always inappropriate to substitute predictive validity

concepts for MPP in the formulation of personnel classification systems. Synthetic validity
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might correctly be viewed as one source of validity information required to implement the MPP

focused techniques demonstrated in this study.

The implementation of an ideal operational classification system is unlikely to be

accomplished in a single step. Traditions relating to Army classification systems and the

administrative complexities involved in implementing changes inhibit making one overall major

change in the operational classification system incorporating all desired improvements. We

believe changes are most likely to occur in a number of separate steps:

1. Substitute FLS-ASVAB composites for the existing AAs as the AVs for the existing
9 job families.

2. Increase the number of job families and corresponding AVs using judgment to adjust
the existing CMF boundaries.

3. Construct improved SQT-type job knowledge measures for a comprehensive set of
MOS and obtain scores for two years of recruit input after soldiers have been on the
job for 6 to 8 months.

4. Develop classification-efficient families and corresponding AVs to substitute for the
a priori job families (while retaining the large number of job families).

5. Eliminate use of job families and instead use separate AVs for each job in the initial
assignment process (first tier); use a smaller number of job families, one for each
factor score, in the second tier.

Steps 1 and 2

The first two steps should be accomplished through the use of all available research data

for the computation of FLS-ASVAB composites. The FLS composites should be used to provide

both AA scores for inclusion in the soldier's record and recommended classification to job

families at the time of initial assignment. When the number of job families exceeds 20,

installation of a two-tiered classification system should be considered. The first tier provides

for initial assignment and makes use of FLS composites. Composite scores for initial assignment

are computed within a figurative black box and the test weights are invisible to the examinees

and transparent to the personnel administration staff. The second tier uses a smaller number of

factor composites, covering the same joint predictor-criterion space; factor scores are recorded
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in official records and are intended for subsequent use by individuals and counselors to assist

in making career decisions.

Step 3

The principal obstacle to an immediate application of the results of this study to the

redesign of an operational system may be the low credibility of SQT when used as a criterion

variable and the limited number of MOS covered in the Project A concurrent validation study.

To the extent that the utility obtainable from the implementation of the findings of the Design

B components of this study are dependent on the credibility of SQT as a personnel research

criterion variable, the value of obtaining validity data covering an equivalent number of MOS,

but using a more credible technical proficiency measure, would be well worth the cost.

Approaches for extrapolating validity information from a relatively small set of jobs to the entire

set of MOS in the Army, such as the use of synthetic validity methods, also require validities

for a large number of MOS before a credible validation of the approach can be provided. A

major finding of this study is that the benefits obtainable from such a collection of criterion

scores would far surpass the estimated costs.

Both the McLaughlin et al. (1984) study and the present study show that there is a

significant content difference between SQT and other criterion variables. It is obvious that SQT

does not measure the same thing as either school grades or the Core Technical Proficiency

(CTP) criterion of the Project A concurrent validation study. Unfortunately, we lack a more
"ultimate" criterion that could be used to establish the superiority of one or another of these

three criteria. Judging from their psychometric properties and the objectives that guided their

construction, we believe that most measurement specialists would readily agree that the CTP

criterion is best and school grades the worst for purposes of both research and operational

developments of the type described here. Traditional SQT items are intended to have training

diagnostic applicability, although less representative of the job and otherwise inappropriate as

a predictor of on-the-job performance. These items are also frequently intended to be criterion

referenced, guarantyeing poor discriminability among those who are at least minimally qualified.

However, it would not be difficult to develop additional test items with more appropriate

psychometric properties and content. These additional items could be administered at the same

time as the traditional SQT items. It should be possible to minimize the difference between the
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content of these additional items and that of the CTP measures for the half of the MOS included

in the concurrent study of Project A that lack "hands on" items.

We emphasize that the development of a superior classification system requires

information about predictor and criterion variables for a large number of representative MOS.

While we do not reject the usefulness of using all existing data in conjunction with analytic and

judgmental data concerning MOS to accomplish an interim reconstitution of job families and

AVs, we believe any resulting system eventually should be validated using a credible CTP-type

criterion measure. A simulation that concludes with the computation of MPP of individuals or

entities after optimal assignment to jobs would, of course, be required.

Step 4

We recommend the use of the techniques of this study for designating the MOS that form

job families and for identifying corresponding AVs, to form a first tier classification system.

This can be done when it is felt that adequate validity information exists. We believe policy

makers should seriously consider the parallel installation of a second tier in the classification

system for use in making career decisions. Important research results bearing on the design of

a two-tiered system will be available prior to 1992.

The results of this study indicate that the classification-efficient clustering method

developed and described here is more than adequate, and is without doubt the best of those

known to us for use in obtaining the job families for the first tier in a personnel classification

system. However, other classification- efficient job clustering methods also have potential for

use in future efforts to reconstitute job families, particularly for the second tier. For example,

rotation of CE factors in the JP-C space to simple structure may provide classification-efficient

job families and corresponding AVs useful for counseling soldiers and the setting of minimum

standards that are visible to all. Such a factorial approach is effective for producing job families

that are no more numerous than twice the number of factors; a family can be identified by each

end (positive and minus ends) of each factor. Thus, the factorial approach is not a good source

of larger numbers of job families. However, a smaller set of job families may serve the needs

of counselors better than a larger set.
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Zeidner and Johnson (1989b, 1991b) have proposed a two-tiered system which would use

a large number of job families for initial assignment and a smaller set for counseling and other

administrative needs. The study exploring this issue, one that is in progress at GWU, will

emphasize a factor analytic approach in which classification-efficient factors rotated to simple

structure in the joint predictor-criterion space will provide factor scores for use as AVs.

Step 5

DAT predicts that an optimal classification system can be obtained when a separate AV

is used for each MOS that has some minimum amount of validity information. We do not know

what validity sample size is required to provide this minimum. It seems reasonable that when

only very small samples are available, judgment may be more important than empirical data for

use in both job clustering and the definition of an AV for each cluster. When samples are a

little larger, but still small, the validity information provided by similar MOS might be combined

to provide an alternative to sheer judgment.

The use of a small number of broadly defined families cannot fail to have at least as

many MOS closer to one or more of the family boundaries than to the center of the job cluster

where the FLS composite for that family is most representative. There is no theoretical basis

for believing that the expected distribution of the points representing MOS in a multidimensional

joint predictor-criterion (JP-C) space is anything other than rectangular (evenly distributed).

Assuming such a distribution of points in a JP-C space with 6 dimensions (a 6 space), even a

family located in a multidimensional corner would still have a greater probability of being closer

to one or more of the hyperplanes separating it from the other families than to the center of its

own family. Families located nearer to the center of the space will have an even greater

probability of being located on, or near, a boundary. An MOS located near a boundary between

two families cannot be expected to have classification efficiency with respect to that pair of jobs.

A promising alternative approach to placing MOS into broad job families calls for the

computation of separate FLS composites for each job. Instead of clustering jobs into fixed

families, a separate cluster is formed around each MOS. Each such job cluster centered on a

selected MOS would have adequate validity data to provide stable FLS composites for the job

which forms the nucleus of each such cluster. The investigation of such an approach would be

an appropriate next step in continued research on the reconstitution of Army MOS into job
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families. The model sampling techniques and computer software utilized in this study, both of

which are now in the public domain, would require only minor modifications to permit their use

in the execution of such a study.

The optimal use of synthetic validity techniques also provides a promising means of using

available validity data to establish FLS composites for all but the least populated MOS. The job

families and AVs resulting from the use of synthetic validities should be evaluated in terms of

MPP computed in the context of system simulations of the type used in this study.
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APPENDIX A: JOB SAMPLE

TABLE A-i: Military Occupational Specialty (MOS) Sample Sizes
for Both the Project A and "McLaughlin" Data Sets

Project A McLaughlin
MOS Name n n

liB Infantryman 491 6355
12B Combat Engineer 544 3109
13B Cannon Crewmember 464 6575
16S MANPADS Crewmember 338 596
19E M48-M60 Armor Crewmember 394 3297
27E TOW/DRAGON Repairer 123 363
31C Single Channel Radio Operator8  289 2393
54E NBC Specialist 340 113
55B Ammunition Specialist 203 288
63B Light Wheel Vehicle Mechanic 478 1495
64C Motor Transport Operator 507 3681
67N Utility Helicopter Repairer 238 511
71L Administrative Specialist 427 2824
76W Petroleum Supply Specialist 339 664
76Y Unit Supply Specialist 444 1149
91A Medical Specialist 392 783
94B Food Service Specialist 368 3943
95B Military Police 597 4516

Average Sample Size 388 2370

*NOS 31C was designated as 05C Radio Teletype Operator in the
McLaughlin 1981/1982 data set.
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TABLE A-2: Military Occupational Specialty (MOS) Sample Sizes

for all 60 Jobs in "McLaughlin" Data Set

MOS n MOS n

*05C Radio TT Operator 2393 73C Finance Specialist 688

05H Elec War/SIGINT INTER_1MC 171 740 Comapter/Tape Writer 132
*11B Infantryman 6355 74F Programmer/Analyst 95

11C Indirect Fire Infwm 1494 758 Personnet Acmin Sp 1061
11H NV Anti-Armor Ipn Infn 979 76C Eq Rec & Parts Sp 331

*128 Combat Engineer 3109 76V Mat Stor & Hdtg Sp 216

12C Bridge Crewmn 450 *76W Petroleum Supply Sp 664
12F Engineer Tracked Crmn 151 *76Y Unit Supply Sp 1149

*135 Cannon Crn (TK4) 6575 82C Field Artillery Surveyor 434

13E Cannon Fire Direction Sp 627 '916 Medical Specialist 783

13F Fire Support Sp 693 91E Dental Specialist 203

15D Lance Crmb/NLRS Sgt 281 91P X-Ray Specialist 159
'16S MAMPADS Crewaeaber 596 92B Medical Lab Sp 310

190 Cavalry Scout 1249 93N Air Traffic Con Tower Op 114
'19E M48-N60 Armor Crain 3297 *948 Food Service Sp 3943
*27E TOW/Dragon Rep 363 *95B Military Police 4516

27F Vulcan Repairer 130 966 Intelligence Analyst 218
31M NuttichanneL Coma Eq Op 2482 96C ELec War/SIGINT Analyst 186
31N Tactical Ckt Con 189

31V Tac Comm Sysop/Mech 515 * = Design A NOS
36C Wire Sys Inst/Op 499 Average 1002
43E Parachute Rigger 100
52D Power Generation Equip Rep 178

"54E NBC Specialist 113

'55B Ammnition Sp 288
57H Cargo Specialist 272
628 Construction Equip Rep 233
62E HV Cornt Equip Rep 202
62F Lifting/Loading Eq Op 129

*638 Lt Wh Veh/Pwr Gen Mech 1495
63N Track Veh Repairer 335
63N M6OAl/A3 Tank Sys Nech 286
63W Wheel Veh Mechanic 180

"64C Motor Transport Op 3681
'67 Utility Net Repairer 511

67V 08N/Scout Net Rep 294
68G Aircraft Structural Rep 125
68J Aircraft FC Repairer 148

'71L Administrative Sp 2824
71M Chapel Activities Sp 182
71M Traffic Mgmt Coordinator 163
72E Combat Telecom Center Op 569

(continued)
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APPENDIX B: PREDICTOR MEASURES

TABLE B-i: ASVAB/Project A Experimental Predictors and
Reliabilites

Code Predictors Reliabilitya

ASVAB testsb
GS General Science 0.86
AR Arithmetic Reasoning 0.91
NO Numerical Operations 0.78
CS Coding Speed 0.85
AS Auto Shop Information 0.87
MK Mathematical Knowledge 0.87
MC Mechanical Comprehension 0.85
EI Electronics Information 0.82
PC Paragraph Comprehension 0.81
WK Word Knowledge 0.92

Paper-and-pencil spatial compositec
SPAT Spatial Composite 0.71

Perceptual-psychomotor compcsitesd
CPAC Complex perceptual accuracy composite 0.62
CPSP Complex perceptual speed composite 0.95
NMSA Number speed and accuracy composite 0.84
PSYM Psychomotor composite 0.82
SRAC Simple reaction accuracy composite 0.52
SRSP Simple reaction speed composite 0.88

Job orientation composites (JOB)e
AUTO Autonomy composite 0.50
SUPP Organizational and Co-Worker Support Q.67
ROUT Routine composite 0.46

Temperament and biodata composites (ABLE)f

ADJU Adjustment composite 0.74
DEPN Dependability composite 0.76
COND Physical condition composite 0.85
SURG Achievement orientation composite 0.78

Interest composites (AVOICE)
f

AUDI Audiovisual interest composite 0.74
COMB Combat interest composite 0.78
FSER Food service interest composite 0.67
PSER Protective service interest composite 0.76
TECH Technical interest composite 0.75
MACH Machinery interest composite 0.79
aASVAB reliabilities reported in McLaughlin, et al. (1984),
p.9; Project A reliabilities reported in Campbell (1988).

biests PC and WK are combined to form VE, a more general
verbal ability test.
cTest-retest reliability (N=468 to 487)
dOdd-even reliability
"Internal consistency reliability (alpha)
fTest-retest reliabilities (N=368 to 412)
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TABLE B-2: Army AFQT Composite and Aptitude Area Composites

Code Composite ASVAB Test Formula

AFQT Armed Forces Qualification Test AR + NO/2 + VE
CL Clerical VE + NO + CS
CO Combat CS + AR + MC + AS
EL Electronics Repair AR + MK + EI + GS
FA Field Artillery CS + AR + MC + MK
GM General Maintenance MK + EI + GS + AS
MM Mechanical Maintenance NO + EI + MC + AS
OF Operators/Food NO + VE + MC + AS
SC Surveillance and Communications NO + CS + VE + AS
ST Skilled Technical VE + MK + MC + GS

Source: Maier and Grafton (1981)
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APPENDIX C: RELIABILITIES FOR "MCLAUGHLIN" DATA SET

TABLE C-1: Cronbach Alpha Reliability Estimates Across Three
Years for the SQT Criterion

:Reliability 1987 :Reliability 1988 :Reliability 1989

MOS n Alpha n Alpha n Alpha n

*05C Radio TT Operator 2393 : 0.86 5660 : 0.82 4827 0.75 4504

05H Elec War/SIGINT INTER-INC 171 : 0.83 591 0.77 461 0.67 450
*111 Infantryman 6355 0.88 22332 0.88 22329 : 0.86 23596

11C Indirect Fire Infm 1494 0.89 3138 : 0.88 3679 0.88 4805

11H NV Anti-Armor Wpn Infn 979 : 0.87 1237 0.86 2331 : 0.78 2627

*128 Combat Engineer 3109 : 0.81 6944 0.85 6733 : 0.86 6511

12C Bridge Cretwan 450 0.75 974 0.82 1083 0.79 1109

12F Engineer Tracked Crmn 151 : 0.89 299 0.86 429 : 0.87 376

*13s Cannon Cron (TK4) 6575 : 0.82 5163 0.83 5812 : 0.83 6944
13E Cannon Fire Direction Sp 627 0.87 833 : 0.86 1431 : 0.89 1234

13F Fire Support Sp 693 0.78 1253 0.86 1275 : 0.84 1339

150 Lance Crwit/MLRS Sgt 281 : 0.90 945

*16S MANPADS Creanember 596 0.76 1231 : 0.77 1467
190 Cavalry Scout 1249 0.87 2555 : 0.87 1947 : 0.87 1233

*19E 48-M60 Armor Crmn 3297 0.87 1121 : 0.87 2952 : 0.79 83

"27E TOW/Dragon Rep 363 0.70 194 : 0.74 279 : 0.88 225
27F Vulcan Repairer 130 0.73 98 : 0.84 106 : 0.90 131

31M Multichannel Coam Eq Op 2482 : 0.86 3440 : 0.86 4543 : 0.76 4215

31N Tactical Ckt Con 189 : 0.88 196 : 0.86 196 : 0.81 336

31V Tac Comm Sysop/Mech 515 : 0.86 2602 : 0.80 1519 : 0.69 1954

36C Wire Sys Inst/Op 499 : 0.88 524 :

43E Parachute Rigger 100 : 0.91 568 : 0.86 571 0.89 1008
520 Power Generation Equip Rep 178 : 0.85 3157 : 0.85 2260
*54E NBC Specialist 113 : 0.79 1490

*556 Ammunition Sp 288 : ".86 1486: 0.88 1582 0.86 1623

57H Cargo Specialist 272 : 0.75 851

628 Construction Equip Rep 233 : 0.84 1385 0.90 1959 : 0.88 1950

62E HV Const Equip Rep 202 : 0.84 1166 0.79 1353 : 0.84 1503

62F Lifting/Loading Eq Op 129 : 0.82 457 0.83 424 : 0.80 426

*638 Lt h Veh/Pwr Gen Mech 1495 : 0.81 8184 0.83 4559 : 0.88 7863

63H Track Veh Repairer 335 : 0.88 1535 C q4 1651 : 0.87 1537

63N M60A1/A3 Tank Sys Nech 286 : 0.79 743: 250 : 0.79 255

63W Wheel Veh Mechanic 180 : 0.87 2434 : 0.86 2404 : 0.85 2501
*64C Motor Transport Op 3681 : 0.87 10359 :

*67t1 Utility Net Repairer 511 : 0.86 1122 : 0.76 758 : 0.77 1056

67V OBN/Scout Net Rep 294 : 0.80 1031 : 0.91 1085 : 0.78 1130

68G Aircraft Structural Rep 125 : 0.86 681 0.83 510 : 0.89 468

684 Aircraft FC Repairer 148 : 0.89 267 : 0.88 294 : 0.91 499

*71L Administrative Sp 2824 : 0.82 7576 : 0.85 7940 : 0.85 6928

71m Chapel Activities Sp 182 : 0.82 785 : 0.87 854 : 0.84 749

71N Traffic Mgmt Coordinator 163 : : 0.82 982 : 0.67 972

72E Combat Telecom Center Op 569 : 0.90 2107 : 0.86 1555 : 0.82 1914

(continued)
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:ReLiabiLity 1987 :ReliabiLity 1988 :Reliability 1989

Nos n Alpha n Alpha n Alpha n

73C Finance Specialist 688 0.82 1601 0.80 1704 0.79 1695

74D Computer/Tape riter 132 0.77 750
74F Programer/Anatyst 95 0.75 419

758 Personnel Admin Sp 1061 0.81 1956 0.80 2548 0.72 2604

76C Eq Rec & Parts Sp 331 0.75 3500 0.81 3957 0.75 3497

76V Nat Stor & Hdig Sp 216 0.78 3591 0.73 3964 0.70 3490
*76W Petroleum Supply Sp 664 0.85 4574 0.78 5052

*76Y Unit Supply Sp 1149 0.87 6917 0.89 7629 0.85 6903

82C Field Artillery Surveyor 434 0.85 762 0.83 496 0.82 684

*918 Medical Specialist 783 0.85 8172 0.81 10363 0.79 10499

91E Dental Specialist 203 0.86 831 0.86 969 0.83 1075
91P X-Ray Specialist 159 0.86 380 0.91 522 0.83 729

928 Medical Lab Sp 310 0.88 837 0.91 1067 0.87 1081
930 Air Traffic Con Tower Op 114 0.87 208

*948 Food Service Sp 3943 0.82 7131 0.82 8422 0.77 7607

*950 Military Police 4516 : 0.81 9250 : 0.80 9218 : 0.80 10980

966 Intelligence Analyst 218 : 0.75 418 : 0.74 429 : 0.72 563
98C Etec War/SIGINT Analyst 186 : 0.69 481 : 0.70 161 : 0.75 377

* = Design A MOS

Average 1002 0.83 2688 0.83 2893 0.81 3018
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APPENDIX D: POPULATION DATA

TABL. D-1: 1980 Youth Population ASVAB Intcrcorrelations
(see Appendix B for code names)

GS AR NO CS AS MK MC EI VE

GS 1.00 .72 .52 .45 .64 .69 .70 .76 .80
AR .72 1.00 .63 .51 .53 .83 .69 .66 .73
NO .52 .63 1.00 .70 .30 .62 .40 .41 .62
CS .45 .51 .70 1.00 .22 .52 .34 .34 .57
AS .64 .53 .30 .22 1.00 .41 .74 .75 .52
MK .69 .83 .62 .52 .41 1.00 .60 .59 .70
MC .70 .69 .40 .34 .74 .60 1.00 .74 .60
EI .76 .66 .41 .34 .75 .59 .74 1.00 .67
VE .80 .73 .62 .57 .52 .70 .60 .67 1.00

Source: Personal Communication from Lawrence M. Hanser, ARI
Chief, Selection and Classification Tech. Area to
Jesse Orlansky, Institute for Defense Analyses,
13 July, 1988

TABLE D-2: Population Predictor Intercorrelations
(see Appendix B for code names)

PREDICTORS 1-12
GS AR NO CS AS NK MC El VE SPAT CPAC CPSP

GS 1.0000 0.7200 0.5200 0.4500 0.6400 0.6900 0.7000 0.7600 0.8000 0.6707 0.3166 0.3170
AR 0.7200 1.0000 0.6300 0.5100 0.5300 0.8300 0.6900 0.6600 0.7300 0.7301 0.3560 0.2876
NO 0.5200 0.6300 1.0000 0.7000 0.3000 0.6200 0.4000 0.4100 0.6200 0.5162 0.3047 0.3119
CS 0.4500 0.5100 0.7000 1.0000 0.2200 0.5200 0.3400 0.3400 0.5700 0.4877 0.3155 0.2953
AS 0.6400 0.5300 0.3000 0.2200 1.0000 0.4100 0.7400 0.7500 0.5200 0.5677 0.2084 0.2427
NK 0.6900 0.8300 0.6200 0.5200 0.4100 1.0000 0.6000 0.5900 0.7000 0.6802 0.3485 0.2811
14C 0.7000 0.6900 0.4000 0.3400 0.7400 0.6000 1.0000 0.7400 0.6000 0.7413 0.2775 0.3005
El 0.7600 0.6600 0.4100 0.3400 0.7500 0.5900 0.7400 1.0000 0.6700 0.6159 0.2749 0.2617
VE 0.8000 0.7300 0.6200 0.5700 0.5200 0.7000 0.6000 0.6700 1.0000 0.6234 0.3678 0.2783
SPAT 0.6707 0.7301 0.5162 0.4877 0.5677 0.6802 0.7413 0.6159 0.6234 1.0000 0.3886 0.4057
CPAC 0.3166 0.3560 0.3047 0.3155 0.2084 0.3485 0.2775 0.2749 0.3678 0.3886 1.0000 -0.2025
CPSP 0.3170 0.2876 0.3119 0.2953 0.2427 0.2811 0.3005 0.2617 0.2783 0.4057 -0.2025 1.0000
NMSA 0.5895 0.7156 0.6966 0.5545 0.3938 0.6774 0.4914 0.4996 0.6498 0.6143 0.3000 0.4129
PSYN 0.4459 0.4383 0.3249 0.2920 0.4586 0.3841 0.5479 0.4544 0.3773 0.6040 0.2477 0.3768
SRAC 0.2136 0.2179 0.1653 0.1703 0.1901 0.1861 0.2100 0.2023 0.2312 0.2311 0.2284 0.0642
SRSP 0.2169 0.2283 0.2646 0.2534 0.1385 0.2146 0.1892 0.1766 0.2288 0.2569 0.0695 0.3716
AUTO 0.2486 0.2261 0.1849 0.1562 0.2227 0.1953 0.2203 0.2393 0.2602 0.2039 0.0566 0.1009
SUPP 0.1383 0.1196 0.1739 0.1745 0.0436 0.1294 0.0584 0.0938 0.2090 0.0978 0.0886 0.0516
ROUT -0.3150 -0.3021 -0.2525 -0.2355 -0.2507 -0.2620 -0.2898 -0.2737 -0.3420 -0.2974 -0.1429 -0.1408
ADJU 0.2256 0.2399 0.1925 0.1338 0.2048 0.2147 0.2261 0.2259 0.2315 0.2258 0.1227 0.1186
DEPN 0.0522 0.1017 0.1350 0.1520 -0.0384 0.1450 0.0162 0.0330 0.0889 0.0561 0.1070 -0.0034
CONO -0.0462 -0.0322 -0.0048 -0.0387 -0.0147 -0.0269 -0.0123 -0.0348 -0.0556 -0.0352 -0.0547 0.0688
SURG 0.2076 0.2533 0.2371 0.2020 0.1593 0.2393 0.1903 0.2003 0.2392 0.2023 0.1246 0.0997
AUDI 0.0147 0.0022 0.0058 0.0221 -0.0909 0.0482 -0.0184 -0.0171 0.0507 0.0032 0.0199 0.0052
COM 0.1539 0.0660 -0.0309 -0.0663 0.3433 0.0120 0.2594 0.2220 0.0435 0.1737 0.0135 0.0728
FSER -0.2097 -0.1852 -0.1295 -0.1199 -0.2366 -0.1408 -0.2317 -0.2179 -0.1939 -0.2148 -0.0924 -0.1278
PSER -0.0990 -0.1426 -0.1365 -0.1275 0.0101 -0.1601 -0.0577 -0.0580 -0.1356 -0.0907 -0.0818 0.0008
TECH -0.0039 0.0629 0.1116 0.0783 -0.1353 0.1275 -0.0575 -0.0342 0.0483 -0.0134 0.0601 -0.0156
MACH -0.1545 -0.1908 -0.2822 -0.2951 0.1864 -0.2210 0.0465 0.0075 -0.2955 -0.0620 -0.1171 -0.0538
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TABLE D-2 (CONT.): Population Predictor Intercorrelations

PREDICTORS 13-24
NMSA PSYM SRAC SRSP AUTO SUPP ROUT ADJU DEPN COND SURG AUDI

GS 0.5895 0.4459 0.2136 0.2169 0.2486 0 1383 -0.3150 0.2256 0.0522 -0.0462 0.2076 0.0147
AR 0.7156 0.4383 0.2179 0.2283 0.2261 0.11% -0.3021 0.2399 0.1017 -0.0322 0.2533 0.0022
NO 0.6966 0.3249 0.1653 0.2646 0.1849 0.1739 -0.2525 0.1925 0.1350 -0.0048 0.2371 0.0058
CS 0.5545 0.2920 0.1703 0.2534 0.1562 0.1745 -0.2355 0.1338 0.1520 -0.0387 0.2020 0.0221
AS 0.3938 0.4586 0.1901 0.1385 0.2227 0.0436 -0.2507 0.2048 -0.0384 -0.0147 0.1593 -0.0909
MK 0.6774 0.3841 0.1861 0.2146 0.1953 0.1294 -0.2620 0.2147 0.1450 -0.0269 0.2393 0.0482
MC 0.4914 0.5479 0.2100 0.1892 0.2203 0.0584 -0.2898 0.2261 0.0162 -0.0123 0.1903 -0.0184
El 0.4996 0.4544 0.2023 0.1766 0.2393 0.0938 -0.2737 0.2259 0.0330 -0.0348 0.2003 -0.0171
VE 0.6498 0.3773 0.2312 0.2288 0.2602 0.2090 -0.3420 0.2315 0.0889 -0.0556 0.2392 0.0507
SPAT 0.6143 0.6040 0.2311 0.2569 0.2039 0.0978 -0.2974 0.2258 0.0561 -0.0352 0.2023 0.0032
CPAC 0.3000 0.2477 0.2284 0.0695 0.0566 0.0886 -0.1429 0.1227 0.1070 -0.0547 0.1246 0.0199
CPSP 0.4129 0.3768 0.0642 0.3716 0.1009 0.0516 -0.1408 0.1186 -0.0034 0.0688 0.0997 0.0052
NMSA 1.0000 0.4413 0.1983 0.3023 0.1890 0.1497 -0.2577 0.2093 0.0990 0.0062 0.2301 -0.0293
PSYM 0.4413 1.0000 0.1434 0.2696 0.1371 0.0528 -0.2091 0.1934 -0.0230 0.0990 0.1352 -0.0224
SRAC 0.1983 0.1434 1.0000 0.1200 0.0368 0.0561 -0.0919 0.0694 0.0245 -0.0456 0.0498 -0.0241
SRSP 0.3023 0.2696 0.1200 1.0000 0.0681 0.0635 -0.1225 0.1149 0.0250 0.0477 0.0991 -0.0152
AUTO 0.1890 0.1371 0.0368 0.0681 1.0000 0.2877 -0.1530 0.1069 0.0051 0.0531 0.2010 0.1033
SUPP 0.1497 0.0528 0.0561 0.0635 0.2877 1.0000 -0.2384 0.1163 0.2542 0.0584 0.3358 0.1682
ROUT -0.2577 -0.2091 -0.0919 -0.1225 -0.1530 -0.2384 1.0000 -0.1912 -0.0363 -0.0653 -0.2435 -0.0059
ADJU 0.2093 0.1934 0.0694 0.1149 0.1069 0.1163 -0.1912 1.0000 0.3414 0.2268 0.6038 0.0622
DEPN 0.0990 -0.0230 0.0245 0.0250 0.0051 0.2542 -0.0363 0.3414 1.0000 0.1279 0.5971 0.1924
COaD 0.0062 0.0990 -0.0456 0.0477 0.0531 0.0584 -0.0653 0.2268 0.1279 1.0000 0.3410 0.0622
SURG 0.2301 0.1352 0.0498 0.0991 0.2010 0.3358 -0.2435 0.6038 0.5971 0.3410 1.0000 0.1838
AUDI -0.0293 -0.0224 -0.0241 -0.0152 0.1033 0.1682 -0.0059 0.0622 0.1924 0.0622 0.1838 1.0000
COMB 0.0276 0.2522 0.0092 0.0196 0.1373 0.0294 -0.0808 0.1666 -0.0298 0.1537 0.1868 0.1781
FSER -0.1650 -0.2282 -0.0718 -0.1014 -0.0944 -0.0527 0.2245 -0.0707 0.0489 -0.0341 -0.0412 0.3074
PSER -0.1145 0.0214 -0.0293 -0.0071 0.0002 0.0635 0.0482 0.0392 0.0340 0.1304 0.0790 0.1378
TECH 0.0688 -0.0316 -0.0292 0.0116 0.0684 0.2415 0.0084 0.1489 0.3069 0.0869 0.2955 0.6719
MACN -0.2163 0.0616 -0.0653 -0.0809 0.0138 -0.0697 0.1119 0.0014 -0.1022 0.1296 0.0076 0.2014

PREDICTORS 25-29
COMB FSER PSER TECH MACH

GS 0.1539 -0.2097 -0.0990 -0.0039 -0.1545
AR 0.0660 -0.1852 -0.1426 0.0629 -0.1908
NO -0.0309 -0.1295 -0.1365 0.1116 -0.2822
CS -0.0663 -0.1199 -0.1275 0.0783 -0.2951
AS 0.3433 -0.2366 0.0101 -0.1353 0.1864
M1 0.0120 -0.1408 -0.1601 0.1275 -0.2210
KC 0.2594 -0.2317 -0.0577 -0.0575 0.045
El 0.2220 -0.2179 -0.0580 -0.0342 0.0075
VE 0.0435 -0.1939 -0.1356 0.0483 -0.2955
SPAT 0.1737 -0.2148 -0.0907 -0.0134 -0.0620
CPAC 0.0135 -0.0924 -0.0818 0.0601 -0.1171
CPSP 0.0728 -0.1278 0.0008 -0.0156 -0.0538
NMSA 0.0276 -0.1650 -0.1145 0.0688 -0.2163
PSYN 0.2522 -0.2282 0.0214 -0.0316 0.0616
SRAC 0.0092 -0.0718 -0.0293 -0.0292 -0.0653
SRSP 0.0196 -0.1014 -0.0071 0.0116 -0.0809
AUTO 0.1373 -0.0944 0.0002 0.0684 0.0138
SUPP 0.0294 -0.0527 0.0635 0.2415 -0.0697
ROUT -0.0808 0.2245 0.0482 0.0084 0.1119
ADJU 0.1666 -0.0707 0.0392 0.1489 0.0014
DEPN -0.0298 0.0489 0.0340 0.3069 -0.1022
CONO 0.1537 -0.0341 0.1304 0.0869 0.1296
SURG 0.1868 -0.0412 0.0790 0.2955 0.0076
AUDI 0.1781 0.3074 0.1378 0.6719 0.2014
COMB 1.0000 0.0864 0.3913 0.1905 0.5881
FSER 0.0664 1.0000 0.1708 0.3518 0.2269
PSER 0.3913 0.1708 1.0000 0.2216 0.3364
TECH 0.1905 0.3518 0.2216 1.0000 0.2118
MACH 0.5881 0.2269 0.3364 0.2118 1.0000
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TABLE D-3: Corrected Validity Coefficients for 18 MOS for
Project A Data with CTP Criterion

PREDICTORS 1-9
GS AR NO CS AS MK MC El VE

110 0.656866 0.621229 0.536789 0.463335 0.483873 0.634964 0.545002 0.565734 0.634258
12B 0.683895 0.623335 0.482641 0.354050 0.574970 0.612381 0.612354 0.668390 0.659945
138 0.422443 0.380366 0.333044 0.275551 0.435487 0.329572 0.419501 0.390942 0.400737
16S 0.493229 0.531860 0.403993 0.399331 0.327244 0.539718 0.400081 0.419077 0.493532
19E 0.599531 0.550098 0.428410 0.348390 0.491584 0.561922 0.535999 0.522067 0.548541
27E 0.660288 0.620168 0.632819 0.561978 0.520991 0.571064 0.552572 0.611584 0.654890
31C 0.477411 0.544064 0.306164 0.186036 0.370263 0.533522 0.453222 0.468237 0.436274
54E 0.577282 0.620872 0.443222 0.409187 0.500734 0.594605 0.550117 0.571048 0.549027
55B 0.481222 0.419575 0.366245 0.358299 0.377841 0.372635 0.453166 0.417673 0.543057
635 0.461438 0.403683 0.215213 0.245279 0.580193 0.353725 0.549157 0.513533 0.382682
64C 0.300903 0.351512 0.098842 0.075076 0.379292 0.314629 0.377936 0.350880 0.226409
671M 0.398259 0.390994 0.249866 0.200611 0.361391 0.399703 0.398365 0.403935 0.363369
71L 0.451731 0.523196 0.374147 0.332497 0.224830 0.561851 0.351650 0.338491 0.473435
76W 0.724902 0.677280 0.415595 0.470868 0.693884 0.632991 0.705073 0.693100 0.68616
76Y 0.573827 0.607247 0.420033 0.400435 0.445024 0.635650 0.491260 0.558312 0.577437
91A 0.466726 0.457812 0.379704 0.439253 0.390980 0.475335 0.406133 0.403509 0.432202
94B 0.550727 0.682143 0.523106 0.496724 0.399889 0.618427 0.475801 0.464941 0.617696
955 0.308507 0.361463 0.312987 0.275644 0.221359 0.365255 0.268593 0.297468 0.317382

PREDICTORS 10-17
SPAT CPAC CPSP NMSA PSYN SRAC SRSP AUTO

11B 0.652374 0.365831 0.315400 0.534503 0.402093 0.226193 0.233807 0.228662
125 0.622855 0.309670 0.227002 0.512925 0.372447 0.190950 0.204843 0.227686
138 0.490541 0.280079 0.218420 0.370732 0.325088 0.129346 0.221210 0.241487
16S 0.539057 0.327187 0.161110 0.491465 0.412220 0.116820 0.117623 0.091227
19E 0.589534 0.366108 0.231046 0.515206 0.372504 0.201491 0.191977 0.147325
27E 0.522335 0.295617 0.277979 0.582803 0.410929 0.178950 0.162618 0.159222
31C 0.449896 0.272000 0.08612 0.403564 0.262090 0.084207 0.097554 0.067000
54E 0.603960 0.318320 0.248402 0.511470 0.379777 0.226676 0.138062 0.173768
555 0.510010 0.311239 0.134092 0.361530 0.408399 0.204356 0.145157 0.093111
635 0.518942 0.161082 0.235836 0.310585 0.359398 0.180705 0.167438 0.214925
64C 0.396216 0.219718 0.189678 0.285677 0.256463 0.150450 0.112552 0.161223
671 0.451617 0.202696 0.058565 0.306593 0.283747 0.082735 0.048330 0.080653
71L 0.524502 0.369656 0.159688 0.416152 0.275218 0.189140 0.159404 0.084238
76W 0.717186 0.321605 0.339029 0.595906 0.486608 0.379508 0.164464 0.191275
76Y 0.541140 0.322173 0.166824 0.562101 0.247266 0.241203 0.208201 0.130668
91A 0.508260 0.207015 0.193966 0.415018 0.316744 0.124493 0.172211 0.138501
94B 0.643599 0.458344 0.245147 0.606390 0.323287 0.302815 0.224887 0.200528
959 0.375857 0.245767 0.104942 0.327871 0.238337 0.092203 0.079345 0.097684
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TABLE D-3 (CONT.) : Corrected Validity Coefficients for 18 MOS
for Project A Data with CTP Criterion

PREDICTORS 18-25
SUPP ROUT ADJU DEPN COND SURG AUD I COMB

119 0.123723 -0.30512 0.239024 0.152477 -0.01476 0.290709 0.00232 0.184334
125 0.115598 -0.29492 0.204694 0.063205 -0.01829 0.229732 0.02302 0.170702
135 0.170646 -0.25147 0.165706 0.040654 -0.02298 0.125694 -0.03220 0.247007
16S 0.262131 -0.24657 0.192076 0.144852 -0.09337 0.197470 0.01368 0.132213
19E 0.147059 -0.31942 0.209132 0. 152346 -0.03104 0.221872 0.04348 0.204331
27E 0.128286 -0.23395 0.180262 0.021000 -0.12227 0.170586 -0.11192 0.166848
31c 0.049802 -0.08717 0.108294 0.113786 -0.09517 0.126693 0.11199 0.108130
54E 0.089491 -0.20924 0.227338 0.167239 -0.07412 0.269000 -0.05607 0.105195
55u 0.110772 -0.29471 0.193754 -0.034219 -0.07633 0.152132 -0.05980 0.176590
639 0.054786 -0.15637 0.193494 0.065594 -0.06677 0.178713 -0.09691 0.304999
64C 0.092326 -0.13812 0.119468 0.069535 -0.04641 0.112791 -0.04330 0.159918
67M 0.062287 -0.17310 0.191400 0.184218 -0.00327 0.211099 0.02633 0.113485
71L 0.096050 -0.20412 0.184007 0.211097 -0.03759 0.256343 0.09834 0.029767
76W 0.185879 -0.34674 0.273591 0.123225 -0.09744 0.305606 0.00774 0.169576
76Y 0.241912 -0.27059 0.171466 0.148173 -0.09447 0.231602 0.02011 -0.016822
91A 0.184232 -0.15618 0.201112 0.221338 -0.08370 0.237056 0.01486 0.181293
94B 0.211675 -0.25494 0.211309 0.169314 -0.11001 0.253456 0.06162 -0.039677
95B 0.110249 -0.17103 0.159484 0.143164 -0.02086 0.180596 -0.07999 0.022969

PREDICTORS 26-29
FSER PSER TECH MACH

119 -0.24569 -0.08846 0.04205 -0.1486
128 -0.20016 -0.15054 0.02201 -0.07964
138 -0.13923 -0.04086 -0.03497 0.04404
16S -0.11756 -0.02380 0.07341 -0.13096
19E -0.19852 -0.07536 0.11842 -0.06009
27E -0.20526 -0.23876 -0.03661 -0.08600
31C -0.03077 -0.07153 0.13561 0.05820
54E -0.17415 -0.14690 0.01373 -0.07097
55e -0.13820 -0.13924 -0.06987 -0.00325
638 -0.18927 -0.09858 -0.10459 0.25888
64C -0.14868 -0.00988 -0.00728 0.13068
67' -0.07037 -0.05552 0.06522 -0.03315
71L -0.10148 -0.02221 0.13728 -0.17941
76W -0.18391 -0.14190 0.07675 -0.05137
76Y -0.17607 -0.19286 0.07027 -0.16625
91A -0.10266 -0.04917 0.04814 -0.00726
948 -0.02029 -0.12862 0.10869 -0.23578
95B -0.12993 -0.08489 -0.01798 -0.15076
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TABLE D-4: Corrected Validity Coefficients for 18 MOS for
"McLaughlin" Data with SQT/Training Criteria

AR AS CS El GS MC MK NO VE

05C 0.522481 0.466196 0.301145 0.511024 0.500311 0.519526 0.477943 0.327860 0.487276
116 0.435398 0.359757 0.295275 0.398889 0.430805 0.425119 0.421797 0.328748 0.414520
12B 0.456009 0.421902 0.234617 0.437370 0.424477 0.482489 0.412656 0.296038 0.379036
136 0.467479 0.429503 0.277034 0.448068 0.464670 0.472093 0.444128 0.335162 0.432633
16S 0.597241 0.602851 0.350482 0.665018 0.619113 0.653891 0.577616 0.402013 0.562170
19E 0.537569 0.503318 0.342678 0.523518 0.559232 0.562900 0.493701 0.399920 0.539033
27E 0.418988 0.275268 0.366791 0.311033 0.372870 0.332871 0.480805 0.416963 0.510881
54E 0.446692 0.348940 0.081376 0.456362 0.320026 0.467917 0.430625 0.287750 0.321035
556 0.512050 0.324288 0.404777 0.423100 0.460575 0.416224 0.564711 0.408218 0.488787
636 0.450968 0.479444 0.204551 0.486390 0.417487 0.486575 0.403886 0.276881 0.383260

C4c 0.470434 0.436968 0.278294 0.470200 0.451799 0.467933 0.409456 0.309199 0.456755
67N 0.448919 0.425099 0.242493 0.476322 0.441937 0.533555 0.409983 0.240398 0.375627
71L 0.635395 0.327525 0.494356 0.464185 0.552146 0.448577 0.625413 0.517749 0.642766
76W 0.523521 0.510653 0.277521 0.521921 0.536168 0.533771 0.472523 0.286529 0.440204
76Y 0.531108 0.312413 0.431966 0.402779 0.490305 0.416069 0.568753 0.425842 0.507263
91A 0.211951 0.195167 0.178205 0.182522 0.231842 0.219951 0.183240 0.169034 0.195193
946 0.577372 0.499129 0.349491 0.551992 0.570028 0.537964 0.504077 0.369834 0.563089
95B 0.562539 0.441142 0.378885 0.511458 0.536842 0.502840 0.525118 0.417818 0.537126

NOTE: The validity matrix for all 60 MOS in the "McLaughlin"
Data Set is available upon request.
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APPENDIX E: REMOVING EFFECTS OF NEGATIVE
ROOTS ON PROJECT A VALIDITY MATRIX

Proof that a Matrix Consisting of Column Arrays
of Real Numbers Multiplied by Its Transpose

Must Have All Positive Eigenvalues

1. Notation:

Y = a rectangular matrix of real numbers; the column
arrays should represent test scores with the rows
representing individuals.

= Y'Y; every matrix multiplied by its transpose is
necessarily a square matrix with all diagonal elements
equal to the sums of squares of real numbers and the
off diagonal elements equal to cross products that can
be either positive or negative real numbers. The
diagonal values for non-zero column arrays are, of
course, positive numbers.

Xw = (YW)' (YW) = W'Y'Y W; Defining W as a matrix of
weights consisting of real numbers, it is seen that Mw
is also necessarily a square matrix with all diagonal
elements equal to either positive real numbers or
zeros. The zeros may result from the use of a W which
transforms some of the columns of Y to columns of
zeros; the sums of squares of these columns are, of
course, zeros.

D = a diagonal matrix of eigenvalues; these are the
eigenvalues to which this proof refers.

A = a square eigenvector matrix such that
A'A = A A' = I, and A' (Y'Y) A = D; it is well known
that if Y'Y is of full rank the latter equation will
uniquely exist.

B = a rectangular orthonormal matrix such that
BIB = I, BIB is an idempotent matrix, and
B' (Y'Y) B = D; the latter equation is also uniquely
defined. When Y'Y is not of full rank, the usual
situation, this D is the matrix of eigenvalues we are
interested in proving much be positive numbers when Y
consists of real numbers.
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2. Demonstration:

We see that by definition, assuming that Y consists of
real numbers, that the diagonal elements of both My and K,
must all be positive or zero. We further see that setting W
equal to either A or B, which ever is appropriate, assures
that X, is equal to D. Thus, all elements of D must be
positive if the elements of Y are real numbers, and we can
say that all the eigenvalues of Y'Y will necessarily be
positive or zero if Y is made up of real numbers. If even
one of the eigenvalues of the matrix, M, are negative we can
say with certainty that M is not equal to the product of a
score matrix (made up of real numbers) and its transpose.
That is, N cannot equal Y'Y for any Y defined as above.

3. Implications:

A matrix of raw test and/or performance scores can be
first transformed into deviate scores which all have zeros
as their column means, and then each column divided by its
standard deviation to create standard scores. The resulting
matrix Y consists of standard scores when considered by
columns. Each column has a mean of zero and a standard
deviation of one. Obtaining a new Y by dividing this
intermediate one by the square root of the number of rows
yields a matrix for which Y'Y yields a matrix of product
moment correlation coefficients. Thus, a correlation matrix
is one of the M, matrices that cannot have a negative
eigenvalue, and it can be emphatically stated that an
alledged correlation matrix possessing even one negative
eigenvalue could not have been computed from a single set of
scores obtained from the same sample. Alledged correlation
matrices yielding one or more negative eigenvalues can
result from many different causes, including: the use of
incomplete data to compute some cells, the use of
tetrachoric correlation coefficients for some cells, and the
combining of the results from several samples to obtain a
covariance or correlation matrix. Usually small adjustments
to a few cells can provide a corrected correlation matrix
which has all positive or zero eigenvalues.
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Steps to Remove the Effects of Negative Roots
on Project A Validity Matrix

(Source: Whetzel, 1991)

1. V R' V' = Cp

2. R , tF
--__T, = - _T2 =
V F, Fp

where Fp is the principal components solution of C,
T, = At D;la and T2 is found by solving T2 ' (FV' F )T 2 = D2

3. Delete factors with negative roots from Fp to obtain F.

4. V+ = F FtI

5. Compute V+ W-1  = Cp+
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APPENDIX F: ANALYSIS SAMPLE GENERATION

I. PROCEDURE FOR GENERATING ANALYSIS SAMPLE

a. Notation
N = number of entities in an MOS sample
n = number of test variables (j=1...29)
m = number of jobs (i=i...18)

= 29x29 matrix of predictor intercorrelations
V = m x 29 matrix of validity coefficients
X, = N x 30 matrix of random normal deviates for the

mth job sample

b. Compute for each of the 18 job samples, 29 synthetic
test scores and 1 criterion score using the Gramian
factor solution of R vi as the transformation matrix.
b.1 Fi = 1vi (A D-1 2 A')

where,
Fi  = 30x30 transformation matrix for the ith

job sample
1vi  = matrix of 29 test intercorrelations in

rows and columns 1-29 plus vectors of 29
validities in 30th row and column for
the ith job;

A - eigenvectors of 30x30 intercorrelation-
validity matrix

D - diagonal matrix of eigenvalues of
intercorrelation-validity matrix

b.2 Yi = XN Fi'
where,
Y = Nx30 matrix of test and criterion scores

(with the same expected parameters as
the population) for N entities in the
ith job sample.

c. Compute matrix of sums-of-squares and cross-products,
Q-=Yi'Yi, for each job sample.

d. Compute the vector of covariances, Ci, for each job
sample.
d.l Identify qi, the 30th row of Qi.

d.2 , = (I'Yi)I/N
where,whr= row vector of means of 29 predictors and

1 criteria (x30)
1 = summing vector of is.
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d.3 ci = (1/N)qi - (m. iu ); and drop the 30th element.
where,
m = a scalar which is the 30th element of

C = Ix29 vector of covariances of the
predictors

e. Compute analysis sample validity matrix (V.) using 18
Cis.

e.1 For each job sample, compute validities for 29
predictors: vi = (Si I2) ci (i/si)
where,
v 1x29 vector of validities between 29

predictors and 1 criterion variable for
each job sample

Si = diagonal matrix (taken from Qi) with the
variances of the 29 predictors and 1 job
sample criterion in the diagonal

si  = scalar which is the covariance of the
criterion for the ith job sample; it is
the 30th element of the matrix Si

e.2 Assemble 18x29 validity matrix (VJ) for combined

job samples using vi.

Va = (V.1
°, V . . , V 81

1 )I

f. Compute analysis sample intercorrelation matrix (R3)
f.1 Drop criterion variable from 18 Qis.

f.2 Sum the 18 Qis weighted by sample size:
Qt = iI" Ni Qi

f.3 Compute analysis sample intercorrelation matrix:
a. M, = [ i= I" Ni(m )] 1/ i - 1

18Ni

b. Ct = Qt (I/ =I Ni) - i 1I (ml)
where,
Ct  = combined covariance matrix for the

18 job samples
Qt = combined sums-of-squares and cross-

products matrix for the 18 job
samples

c. R = S m  S-1/

where,
S = diagonal matrix of the diagonal

elements of C1 (i.e., predictor
variables).
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TABLE F-i: INITIALIZATION SEEDS USED TO GENERATE MATRIX OF
RANDOM NORMAL DEVIATES (X.) FOR ANALYSIS SAMPLE

X., f or mth
MOS sample Initialization Seed

Xl 1587175283
X2 1976274088
X3 1271376363
X4 1728981280
X5 450151973
X6 724467093
X7 2015440489
X8 277105243
X9 68383890
X1o 1964442650
X11 135371761
X12 605699282
X13 1656991152
X14 234809644
X15 805238231
X16 399052330
X17 2003666395
X1s 1300943904_______
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TABLE F-2: Analysis Sample Predictor Intercorrelations
(see Appendix B for code names)

PREDICTORS 1-9
GS AR NO CS AS HK MC El VE

GS 1.00000 0.71978 0.52743 0.44542 0.64820 0.68728 0.71156 0.76236 0.79520
AR 0.71978 1.00000 0.62800 0.49502 0.54084 0.82568 0.68904 0.65296 0.73448
NO 0.52743 0.62800 1.00000 0.69626 0.32077 0.62096 0.40977 0.41260 0.62451
CS 0.44542 0.49502 0.69626 1.00000 0.22223 0.49864 0.33390 0.33251 0.56959
AS 0.64820 0.54084 0.3207 0.22223 1.00000 0.41681 0.73911 0.75078 0.51914
wK 0.68728 0.82568 0.62096 0.49864 0.41681 1.00000 0.59577 0.57768 0.69993
MC 0.71156 0.68904 0.40977 0.33390 0.73911 0.59577 1.00000 0.73880 0.60463
El 0.76236 0.65296 0.41260 0.33251 0.75078 0.57768 0.73880 1.00000 0.66455
VE 0.79520 0.73448 0.62451 0.56959 0.51914 0.69993 0.60463 0.66455 1.00000
SPAT 0.67339 0.73280 0.53150 0.49495 0.56744 0.67778 0.73758 0.60739 0.62930
CPAC 0.31255 0.35070 0.29975 0.31894 0.19571 0.33621 0.26699 0.26318 0.36539
CPSP 0.33420 0.30202 0.32794 0.31336 0.25990 0.30185 0.32482 0.27826 0.29779
NNSA 0.59448 0.72021 0.70341 0.55597 0.41169 0.67984 0.50018 0.49857 0.66101
PSYN 0.46243 0.43935 0.34584 0.29845 0.46265 0.37799 0.54713 0.46232 0.38456
SRAC 0.22610 0.21320 0.16104 0.17295 0.19423 0.18480 0.20497 0.20906 0.24201
SRSP 0.23572 0.23633 0.27474 0.26668 0.16228 0.22299 0.20377 0.20315 0.25615
AUTO 0.25845 0.24468 0.20359 0.16786 0.24415 0.20559 0.23501 0.24783 0.28000
SUPP 0.13595 0.12318 0.16773 0.17596 0.04155 0.13357 0.05720 0.09501 0.20500
ROUT -0.31485 -0.30689 -0.25269 -0.23590 -0.24090 -0.26236 -0.29184 -0.26263 -0.33297
ADJU 0.24471 0.25308 0.20380 0.13960 0.20404 0.23283 0.23388 0.23516 0.23970
DEPN 0.06508 0.09893 0.14136 0.16064 -0.03845 0.15240 0.01137 0.03938 0.10231
CONo -0.04943 -0.02892 -0.00414 -0.03948 -0.02557 -0.02673 -0.00974 -0.04200 -0.05606
SURG 0.22196 0.26116 0.23745 0.20869 0.14966 0.25444 0.18511 0.20147 0.24407
AUDI 0.01454 0.02279 0.01324 0.02628 -0.0804 0.06490 -0.00826 -0.00617 0.05884
COMB 0.15768 0.05750 -0.03191 -0.06616 0.34264 0.00238 0.24480 0.22622 0.03818
FSER -0.19883 -0.18273 -0.14583 -0.13293 -0.22763 -0.13563 -0.22383 -0.20691 -0.18970
PSER -0.09213 -0.14403 -0.14491 -0.12370 0.01535 -0.15871 -0.06066 -0.05814 -0.13622
TECH -0.00629 0.06884 0.11075 0.07234 -0.13633 0.13780 -0.06826 -0.04307 0.05530
MACH -0.14907 -0.18398 -0.27661 -0.29726 0.18344 -0.21946 0.04437 0.00556 -0.29738

PREDICTORS 10-19
SPAT CPAC CPSP NMSA PSYM SRAC SRSP AUTO SUPP ROUT

GS 0.67339 0.31255 0.33420 0.59448 0.46243 0.22610 0.23572 0.25845 0.13595 -0.31485
AR 0.73280 0.35070 0.30202 0.72021 0.43935 0.21320 0.23633 0.24468 0.12318 -0.30689
NO 0.53150 0.29975 0.32794 0.70341 0.34584 0.16104 0.27474 0.20359 0.16773 -0.25269
CS 0.49495 0.31894 0.31336 0.55597 0.29845 0.17295 0.26668 0.16786 0.17596 -0.23590
AS 0.56744 0.19571 0.25990 0.41169 0.46265 0.19423 0.16228 0.24415 0.04155 -0,24090
M1 0.67"78 0.33621 0.30185 0.67984 0.37799 0.18480 0.22299 0.20559 0.13357 -0.26236
MC 0.73758 0.26699 0.32482 0.50018 0.54713 0.20497 0.20377 0.23501 0.05720 -0.29184
El 0.60739 0.26318 0.27826 0.49857 0.46232 0.20906 0.20315 0.24783 0.09501 -0.26263
VE 0.62930 0.36539 0.29779 0.66101 0.38456 0.24201 0.25615 0.28000 0.20500 -0.33297
SPAT 1.00000 0.38305 0.41062 0.61824 0.59619 0.21981 0.26627 0.22440 0.09566 -0.29272
CPAC 0.38305 1.00000 -0.20501 0.30353 0.25474 0.24055 0.08598 0.07289 0.10032 -0.15041
CPSP 0.41062 -0.20501 1.00000 0.42550 0.37502 0.06074 0.35994 0.10256 0.04153 -0.13127
NNSA 0.61824 0.30353 0.42550 1.00000 0.44084 0.19430 0.31724 0.20595 0.15041 -0.27015
PSYM 0.59619 0.25474 0.37502 0.44084 1.00000 0.13981 0.28262 0.16027 0.06490 -0.21372
SRAC 0.21961 0.24055 0.06074 0.19430 0.13981 1.00000 0.11849 0.05171 0.05154 -0.09579
SRSP 0.26627 0.08598 0.35994 0.31724 0.28262 0.11849 1.00000 0.07710 0.05247 -0.12173
AUTO 0.22440 0.07289 0.10256 0.20595 0.16027 0.05171 0.07710 1.00000 0.27862 -0.15299
SUPP 0.09566 0.10032 0.04153 0.15041 0.06490 0.05154 0.05247 0.27862 1.00000 -0.24772
ROUT -0.29272 -0.15041 -0.13127 -0.27015 -0.21372 -0.09579 -0.12173 -0.15299 -0.24772 1.00000
ADJU 0.22158 0.09515 0.13258 0.21836 0.19990 0.07677 0.14092 0.12526 0.10806 -0.20918
DEPN 0.04447 0.09187 0.00438 0.09911 -0.02457 0.01941 0.03227 0.00744 0.25074 -0.05688
COND -0.03273 -0.04344 0.04337 -0.00360 0.10637 -0.06069 0.02220 0 05974 0.07655 -0.08549
SURG 0.19479 0.11215 0.11621 0.22610 0.12887 0.05397 0.10666 0.19722 0.34122 -0.26958
AUDI 0.01702 0.03381 0.01624 -0.04681 -0.02126 -0.00584 -0.01819 0.09742 0.17444 -0.00857
COMB 0.14999 -0.01369 0.08413 0.02551 0.24652 0.00801 0.01637 0.16565 0.02968 -0.06994
FSER -0.21667 -0.09562 -0.11637 -0.17283 -0.22699 -0.07272 -0.09337 -0.10740 -0.04133 0.20022
PSER -0.09294 -0.08502 0.01028 -0.11166 0.01389 -0.00095 -0.00098 -0.00419 0.07959 0.05027
TECH -0.01612 0.05277 -0.00688 0.07134 -0.04281 -0.03367 0.00136 0.07628 0.25116 -0.00017
MACH -0.06805 -0.13882 -0.03936 -0.22019 0.06004 -0.07074 -0.08230 0.03570 -0.06237 0.12232
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TABLE F-2 (CONT.): Analysis Sample Predictor
Intercorrelations

Predictors 20-29
ADJU DEPH COND SURG AUD1 COMB FSER PSER TECH MACH

GS 0.24471 0.06508 -0.04943 0.22196 0.01454 0.15768 -0.19883 -0.09213 -0.00629 -0.14907
AR 0.25308 0.09893 -0.02892 0.26116 0.02279 0.05750 -0.18273 -0.14403 0.06884 -0.18398
NO 0.20380 0.14136 -0.00414 0.23745 0.01324 -0.03191 -0.14583 -0.14491 0.11075 -0.27661
CS 0.13960 0.16064 -0.03948 0.20869 0.02628 -0.06616 -0.13293 -0.12370 0.07234 -0.29726
AS 0.20404 -0.03845 -0.02557 0.14966 -0.08044 0.34264 -0.22763 0.01535 -0.13633 0.18344
NK 0.23283 0.15240 -0.02673 0.25444 0.06490 0.00238 -0.13563 -0.15871 0.13780 -0.21946
xc 0.23388 0.01137 -0.00974 0.18511 -0.00826 0.24480 -0.22383 -0.06066 -0.06826 0.04437
E1 0.23516 0.03938 -0.04200 0.20147 -0.00617 0.22622 -0.20691 -0.05814 -0.04307 0.00556
VE 0.23970 0.10231 -0.05606 0.24407 0.05884 0.03818 -0.18970 -0.13622 0.05530 -0.29738
SPAT 0.22158 0.04447 -0.03273 0.19479 0.01702 0.14999 -0.21667 -0.09294 -0.01612 -0.06805
CPAC 0.09515 0.09187 -0.04344 0.11215 0.03381 -0.01369 -0.09562 -0.08502 0.05277 -0.13882
CPSP 0.13258 0.00438 0.04337 0.11621 0.01624 0.08413 -0.11637 0.01028 -0.00688 -0.03936
NMSA 0.21836 0.09911 -0.00360 0.22610 -0.01681 0.02551 -0.17283 -0.11166 0.07134 -0..2019
PSYM 0.19990 -0.02457 0.10637 0.12887 -0.02126 0.24652 -0.22699 0.01389 -0.04281 0.06004
SRAC 0.07677 0.01941 -0.06070 0.05398 -0.00585 0.00802 -0.07273 -0.00096 -0.03368 -0.07074
SRSP 0.14092 0.03227 0.02220 0.10666 -0.01819 0.01637 -0.09337 -0.00098 0.00136 -0.08230
AUTO 0.12526 0.00744 0.05974 0.19722 0.09742 0.16565 -0.10740 -0.00419 0.07628 0.03570
SUPP 0.10806 0.25074 0.07655 0.34122 0.17444 0.02968 -0.04133 0.07959 0.25116 -0.06237
ROUT -0.20918 -0.05688 -0.08549 -0.26958 -0.00857 -0.06994 0.20022 0.05027 -0.00017 0.12232
ADJU 1.00000 0.33293 0.22715 0.60838 0.04989 0.16496 -0.08336 0.03047 0.12820 -0.00922
DEPN 0.33293 1.00000 0.13667 0.59075 0.20251 -0.04367 0.06396 0.03126 0.31410 -0.10894
COND 0.22715 0.13667 1.00000 0.34333 0.07349 0.15782 -0.04547 0.13498 0.10826 0.14244
SURG 0.60838 0.59075 0.34333 1.00000 0.17266 0.17082 -0.04036 0.07756 0.28651 -0.00400
AUDI 0.04989 0.20251 0.07349 0.17266 1.00000 0.17159 0.31729 0.13361 0.67286 0.19789
COMB 0.16496 -0.04367 0.15782 0.17082 0.17159 1.00000 0.09267 0.38155 0.17102 0.57606
FSER -0.08336 0.06396 -0.04547 -0.04036 0.31729 0.09267 1.00000 0.16751 0.35184 0.23177
PSER 0.03047 0.03126 0.13498 0.07756 0.13361 0.38155 0.16751 1.00000 0.20934 0.34614
TECH 0.12820 0.31410 0.10826 0.28651 0.67286 0.17102 0.35184 0.20934 1.00000 0.19457
MACH -0.00922 -0.10894 0.14244 -0.00400 0.19789 0.57606 0.23177 0.34614 0.19457 1.00000

TABLE F-3: Analysis Sample Validity Coefficients for 18 MOS

PREDICTORS 1-9
GS AR NO CS AS NK NC El VE

118 0.616324 0.562951 0.473442 0.383062 0.468460 0.562460 0.477467 0.519798 0.600048
12B 0.674561 0.591346 0.530004 0.329280 0.589070 0.607769 0.627996 0.693098 0.649865
138 0.407003 0.290783 0.239132 0.199683 0.444174 0.240448 0.402179 0.413035 0.388540
16S 0.532369 0.564768 0.392423 0.399841 0.312493 0.551154 0.415636 0.349667 0.474066
19E 0.643871 0.566385 0.452945 0.324618 0.526622 0.567517 0.613683 0.566852 0.583430
27E 0.687531 0.657306 0.664267 0.530909 0.572547 0.640832 0.561024 0.626965 0.659186
31C 0.538728 0.587352 0.348889 0.158829 0.461669 0.572805 0.472554 0.573544 0.475890
54E 0.575748 0.644649 0.396164 0.392442 0.538695 0.593120 0.541257 0.558782 0.561591
559 0.501583 0.426438 0.364091 0.390143 0.338015 0.412250 0.414435 0.442930 0.585551
63B 0.478853 0.414483 0.280681 0.292236 0.565156 0.362594 0.541182 0.497081 0.418200
64C 0.311752 0.375833 0.100337 0.134280 0.410017 0.339482 0.397166 0.368794 0.264535
67M 0.416102 0.415564 0.310853 0.220211 0.424643 0.422864 0.464800 0.470580 0.401287
71L 0.466161 0.571514 0.441537 0.371583 0.224624 0.610297 0.376136 0.361487 0.550738
76W 0.745418 0.715050 0.457936 0.523495 0.706044 0.669409 0.725134 0.723530 0.718848
76Y 0.535583 0.558070 0.422517 0.366543 0.417376 0.581944 0.428227 0.509820 0.543894
91A 0.495820 0.486555 0.335059 0.416737 0.409915 0.506523 0.428372 0.408871 0.420976
946 0.609311 0.734807 0.631953 0.567449 0.401812 0.658941 0.518803 0.521831 0.678982
956 0.304223 0.411412 0.302817 0.305440 0.254008 0.370947 0.292374 0.289180 0.313460
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TABLE F-3 (CONT.): Analysis Sample Validity Coefficients
for 18 MOS

PREDICTORS 10-17
SPAT CPAC CPSP NMSA PSYM SRAC SRSP AUTO

116 0.577811 0.369428 0.247777 0.472248 0.337947 0.264541 0.185221 0.208096
129 0.595219 0.311885 0.244194 0.531543 0.364741 0.125336 0.172867 0.228114
139 0.444870 0.291214 0.205873 0.267528 0.339757 0.112169 0.254886 0.246644
16S 0.579715 0.445558 0.068747 0.438559 0.403928 0.154316 0.064357 0.097470
19E 0.628124 0.373847 0.285527 0.564891 0.371844 0.254272 0.268901 0.094635
27E 0.579774 0.458102 0.259674 0.610035 0.429602 0.294654 0.173198 0.107698
31C 0.471516 0.243829 0.124190 0.405488 0.302205 0.069484 0.083043 0.067012
54E 0.630956 0.360028 0.243645 0.487480 0.409345 0.185148 0.169292 0.166405
559 0.467783 0.386471 0.082504 0.321001 0.378069 0.178850 0.126470 0.281267
63B 0.536618 0.172290 0.280395 0.371339 0.315417 0.120595 0.226666 0.259601
64C 0.378763 0.201841 0.139778 0.291003 0.230583 0.190204 0.061833 0.210326
67N 0.507745 0.124775 0.170763 0.324109 0.387607 0.171695 0.114007 0.144702
71L 0.564000 0.430198 0.164908 0.490802 0.337461 0.226737 0.238271 0.158593
76W 0.721700 0.307184 0.420522 0.623461 0.437927 0.345266 0.215461 0.253960
76Y 0.482654 0.337699 0.176237 0.563328 0.229504 0.167747 0.322511 0.095953
91A 0.513420 0.233924 0.199720 0.412701 0.317121 0.107758 0.197889 0.147353
94B 0.686286 0.509148 0.323655 0.659775 0.376398 0.322284 0.239700 0.268616
95B 0.391296 0.180079 0.128934 0.325210 0.232115 0.020700 0.098863 0.208798

PREDICTORS 18-25
SUPP ROUT ADJU DEPN COND SURG AUDI CONS

119 0.141286 -0.26408 0.290320 0.177203 -0.02927 0.331053 0.07098 0.17524
129 0.096116 -0.28008 0.154580 0.028272 -0.01609 0.206386 0.00633 0.18777
139 0.131913 -0.24903 0.074804 -0.003510 0.00780 0.060054 0.00408 0.25265
16S 0.345545 -0.21043 0.175337 0.149968 -0.17071 0.183485 0.05158 0.10496
19E 0.117040 -0.20926 0.225786 0.205450 -0.10440 0.190666 0.02271 0.16677
27E 0.009314 -0.18604 0.251193 -0.007246 -0.25478 0.191778 -0.10050 0.30745
31C 0.097417 -0.05213 0.178162 0.252052 -0.20573 0.141359 0.07618 0.06639
54E 0.145356 -0.19700 0.170409 0.148509 -0.13733 0.243643 -0.04438 0.01362
559 0.131501 -0.32211 0.287667 -0.049516 -0.12682 0.188270 -0.02598 0.08973
639 0.011350 -0.17911 0.222047 0.077091 -0.06538 0.214843 -0.09496 0.28791
64C 0.180161 -0.16129 0.132934 0.122506 -0.06601 0.171556 -0.05129 0.14252
67N 0.133552 -0.19690 0.193803 0.197193 0.03152 0.197838 0.04828 0.19210
71L 0.166862 -0.24424 0.282355 0.190156 -0.00345 0.320066 0.09510 -0.01727
76W 0.174817 -0.37394 0.326455 0.141085 -0.13669 0.328292 0.03214 0.29591
76Y 0.244416 -0.36014 0.153944 0.081836 -0.12505 0.186458 0.00375 -0.12747
91A 0.062038 -0.17913 0.199392 0.170860 -0.07013 0.232928 0.03185 0.20376
949 0.242429 -0.34705 0.230206 0.216162 -0.02723 0.332733 0.15800 -0.04531
95B 0.108517 -0.14855 0.207612 0.205828 -0.01416 0.234308 -0.08599 0.03068

PREDICTORS 26-29
FSER PSER TECH NACH

119 -0.25410 -0.10126 0.122295 -0.09606
129 -0.17455 -0.22021 0.003768 -0.08979
139 -0.15283 -0.02816 -0.042371 0.10374
16S -0.13702 0.02299 0.085493 -0.16196
19E -0.09880 -0.19142 0.093506 -0.13331
27E -0.20590 -0.11865 -0.040170 0.00978
31C -0.09160 -0.03421 0.155385 0.01219
54E -0.21996 -0.19338 -0.011825 -0.12274
556 -0.04207 -0.08573 -0.037774 0.00332
639 -0.13522 -0.12196 -0.092142 0.17884
64C -0.14871 0.01967 0.023733 0.11538
67N 0.02171 0.01197 0.067338 -0.00061
71L -0.11920 -0.03899 0.159962 -0.22374
76W -0.10717 -0.04055 0.097715 -0.00806
76Y -0.18774 -0.22485 0.015640 -0.22033
91A -0.09292 -0.10389 0.025384 0.01264
94B -0.01991 -0.10790 0.138777 -0.28341
959 -0.10031 0.02696 -0.015346 -0.08256
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APPENDIX G: CLASSIFICATION-EFFICIENT PROGRAM

C ----------------------------------------------------------- C
C PROGRAM: CLASSIFICATION-EFFICIENT CLUSTERING PROGRAM C
C PURPOSE: CLUSTER JOBS INTO 6, 9, OR 12 JOB FAMILIES C
C WHILE MAXIMIZING HORST'S DIFFERENTIAL INDEX C
C ----------------------------------------------------------- C
C
C * FUNCTIONS AND SUBROUTINES APPEAR FIRST IN THE PROGRAM
C
C * SUBROUTINE THAT INCREASES THE ROW DESIGNATORS AS NEEDED

SUBROUTINE CNECK(X, Y, MAX)
INTEGER X, Y, MAX
IF (X AtE. (MAX-i)) THEN

IF (Y .GT. MAX) THEN
X zX + 1

Y = X+ I
END IF

END IF
RETURN
END

C *SUBROUTINE THAT LOCATES THE SMALLEST VALUE IN D M4ATRIX
SUBROUTINE LOCATE(D, X, SMLCOL, SNLROW)
REAL 0
DIMENSION D08,18)
INTEGER X, 1, J, SNLCOL, SNIROW
SMLCOL = 1
SHLROW a 1
DO 20 1 = 1,X

DO 19 J z 2,X
IF 0D0,J) .LT. D(SNLROW, SI4LCOL) THEN

SNLCOL = J
SMLROW = I
END IF

19 CONTINUE
20 CONTINUE

RETURN
END

C ------------------------------------------- ------------- C
C MAIN PROGRA14 C
C--------------------------------------------------------- C
C DECLARE VARIABLES

REAL F, K TEMP, C, G, GT, W.JLT, TOTAL, GGT, DG, M, SUM, HD
REAL A, 50, S, 9, D, N1, N2
DIMENSION F018,32), C018), G018,18), GT(18,18), GGT(18,18)
DIMENSION DG(18), M018), A018,18), B(08.18), D018,18)
INTEGER NUMCLS, X, Y, NC, 1, J, NUM, Q, L, P, Ri, R2
INTEGER SCDL, SROW, S1, S2, Z, R, T
CHARACTER* SOURCE

C *VARIABLES THAT WILL NEED TO BE CHANGED FOR EACH CONDITION
C *NUMBER OF CLUSTERS (6, 9, 12)

NUMCLS x6
C aDATA SOURCE (PROJA29, PROJA9, MCGL)

SOURCE = 'MCGL'
C *NUM4BER OF JOBS (ROWS)

X z 18
C aNUMB8ER OF FACTORS- -COLUMNS IN F M4ATRIX (9 OR 18)

y~ z 9

C VALUE AFTER CALCULATION OF 18 CHOOSE 2
NC x 153

C aREAD IN DATA
IF (SOURCE .EQ. 'PROJA291) THEN

READ (5,20) ((FI,J), J=1,18), 1=1,18)
20 FORM4AT (18(1X,F9.6))

END IF
IF W(URCE .EQ. 'PROJA91) .OR. (SOURCE .EQ. 'MCGL')) THEN

READ (5,28) ((F(I,J), J=1,9), 1=1,18)
28 FORMAT (91XF9.6))

END IF
C *ZERO OUT SPACES AT END OF EACH ROW OF THE F MATRIX

DO 35 I = 1,18
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DO 34 J = (Y*1), (Y+14)
F(I,J) = 0

34 CONTINUE
35 CONTINUE
C *ADO COUNTER AND J06 DESIGNATORS TO THE END OF THE ROWS
C OF THE F MATRIX

K z0
DO 40 1 z 1,18

K x K + 1.0
F(1,(Y.1)) = 1.0
FCI,(Y+2)) = K

40 CONTINUE
C WRITE OUT ORIGINAL F MATRIX TO CHECK PROGRAM

WRITE (6,41)
41 FORMAT (/1X, 'THE ORIGINAL F M4ATRIX IS:')

WRITE (6,43) (F(I,J), J=1,9), 1=1,18)
43 FORM4AT (9C1X,F9.6))
C *SET COUNTER TO TRACK THE NUMBER OF CLUSTERS

NUNM X
C *SET COUNTER FOR THE NUMBER OF ITERATIONS
C * IS THE TOTAL NUMBER OF ITERATIONS

Q a X - NUNCIS + 1
C *CALCULATE COLUMN MEANS OF F MATRIX- -STORE IN C VECTOR
C *THE SAME COLUM4N MEANS OF F WILL BE USED THROUGHOUT THE PROGRAM

DO 50 1 z1,
TEMP z 0
DO 45 J = 1,NUM

TEM4P z TEMP + FJ,I)
45 CONTINUE

CCI) z TEMP/MUM
50 CONTINUE

WRITE (6,52)
52 FORMAT UlX, 'COLUMN MEANS OF F MATRIX')

WRITE (6,54) (C(I), 11I,Y)
54 FORMAT (9C1X,F6.3))
C *BEGIN LARGE LOOP OF THE PROGRAM

DO 450 L z 1,Q
C *ZERO OUT VECTORS

DO 60 1 z 1,X
DG(1 = 0
HMI z 0

60 CONT INUE
C *ZERO OUT MATRICES

DO 65 I z 1,X
DO 64 J z 1,X

G(I,J) = 0
GT(I,J) z 0
GGT(I,J) = 0
ACI,J) =0
B(I,J) =0
D(1,1) =0

64 CONTINUE
65 CONTINUE
C *WRITE OUT ITERATION NUMBER

WRITE (6,85)
85 FORMAT C/tX, 'ITERATION NUMBER:')

WRITE (6,87) L
87 FORMAT (12)
C *CALCULATE G MATRIX OF DEVIATIONS (VALUE IN EACH COLUMN MINUS
C *ITS COLUMN MEAN)

DO 100 1 z 1,Y
DO 95 Ja I, NUM

GC1,I) = (F(J,I) - C(I))
95 CONTINUE
100 CONINUE
C W~RITE (6,110)
C 110 FORMAT C/tX, 'G MATRIX OF DEVIATIONS')
C WRITE (6,112) (00,J), J=1,Y), 1=1,NUM)
C 112 FORM4AT (9(1X,F9.6))
C * TRANSPOSE G MATRIX

DO 120 1 z 1.NUM
DO 119 J1 1,Y

GT(J,I) = G(1,J)
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119 CONTINUE
120 CONTINUE
C * CALCULATE GG'

Do 150 1 =1,NUM
DO 149 P z 1,NUM

TOTAL a 0
DO 140 J = 1,Y

MULT =G(I,J) * GT(J,P)
TOTAL a TOTAL + MULT

140 CONTINUE
GGT(I,P) - TOTAL

149 CONT INUIE
150 CONTINUE
C * FORM DG VECTOR FROM DIAGONAL ELEMENTS OF GGT

Do 180 1 a1,NUM
DGCI = GGTCI 1I)

180 CONTINUE
WRITE(6, 81)

181 FORM4AT CI1X, IDG VECTOR')
WRITEC6,183) (DG(I, 11I,NLI)

183 FORMAT C18CX,F6.3))
C *CREATE A VECTOR CONTAINING NLR48ER OF JOBS (M) IN EACH FAMILY
C * TO BE USED IN SUBSEQUENT MULTIPLICATIONS

DO 185 1 2 ,NUM
MCI) zFCI,CY41))

185 CONTINUE
WRITE(6,186)

186 FORM4AT /IX, IM VECTOR')
WRITE(6,188) (MCI). I=1,NUN)

188 FORMAT C18C1X,F5.3))
C * CALCULATE HORST'S DIFFERENTIAL INDEX

SUM z 0
DO 190 1 a1,NUM

SUM = SUM + (DG(I * MCI))
190 CONTINUE

HD SLIM
WRITE (6,195)

195 FORMAT (/1X, 'HOIST INDEX')
WRITE (6,197) HO

197 FORMAT OiX, F9.6)
C
C *STOP PROGRAM ON LAST ITERATION SO THAT HD IS CALCULATED BUT
C NOTHING ELSE IS DONE
C

IF (L .EQ. Q) GO TO 500
C
C *CALCULATE NAN MATRIX

Ri 2 1
R2 a RI + 1
Do 250 1 = 1,NC

TOTAL = 0
CALL CHECK(R1,R2,NUM)
TOTAL = (M(R1) * DG(R1)) + (M(R2) *DG(R2))
ACR1,R2) z TOTAL
A(R2,R1) aTOTAL
ACR1,R1) - 1.0
12 a 12 + 1

250 CONTINUE
A(NUM,NUM) - 1.0
WRITE (6,260)

260 FORMAT C/1X, 'A MATRIX')
WRITE (6,262) (00(,J), J=1,X), 1=1,X)

262 FORM4AT (18(X,F6.3))
C *CALCULATE NO" M4ATRIX

Ri 1
12 z R + I
DO 290 1 - 1,NC

TOTAL = 0
So x
DO 280 J a 1,Y

CALL CHECKZCR1,R2,NUM)
S 2 (((M(RI)*F(R1,J))+(M(R2)F(R2,J)))/(M(R)44(R2)))

+~ - C(J)
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so = S S
TOTAL =TOTAL + SQ

280 CONTINUE
B(RI,R2) =TOTAL * (M(R1) + M(R2))
S(R2,Rl) =TOTAL * (M(Rl) + M(R2))
B(Rl,Rl) =0
R2 - R2 +

290 CONTINUE
WRITE (6,295)

295 FORM4AT /IX, 'B MATRIX')
WRITE (6,297) ((B(I,J), J=1,X), I=1,X)

297 FORMAT C18C1X,F6.3))
C * CALCULATE CA-B) TO GET A D MATRIX

DO 320 1 z 1,NWI
Do 319 J I ,NLN4

OCI,J) =A(I.J) - B(I,J)
319 CONTINUE
320 CONTINUE

WRITE (6,325)
325 FORMAT C11X, ID MATRIX')

WRITE (6,327) ((0(I,J), J=1,X), I=l,X)
327 FORMAT (18(1XF6.3))
C * LOCATE SM4ALLEST VALUE IN 0 M4ATRIX

CALL LOCATE(D,NUM,SCOL,SROW)
WRITE (6,340)

340 FORM4AT UlX, 'THE SMALLEST VALUE IN D IS IN COLUMN:')
WRITE (6,343) SCO.

343 FORM4AT OiX. 12)
WRITE (6,345)

345 FORM4AT OiX, 'AND ROW:')
WRITE (6,343) SROW

r* CALCULATE WEIGHTED AVERAGE FOR THE NEW ROW OF F MATRIX
DO 380 J a1,

Ni z F(SROW, (Y+1))
N2 w F(SCOL, (Y+l))
F(SROW,J) = ((NI*F(SROW,J)) +(N2*F(SCOL,J)))/CNlN2)

380 CONTINUE
C * STORE JOB DESIGNATORS AT END OF APPROPRIATE F MATRIX RON

Si = INT(HI)
S2 a INT(N2)
Z y + I
P 51 + 1
DO 390 R a 1,S2

F(SROW, (Z4P)) = F(SCOL, (Z+R))
PxP + 1

390 CONTINUE
C *INCREMENT N COUNTER IN THE COMBINED ROW OF F MATRIX

F(SROW,Z) a Ni + N2
C *CLOSE RE14AINING ROWS TOGETHER IN THE F M4ATRIX

T aNUM - SCO.
DO 400 I 1,T

DO 396 J z 1,(Y+14)
F(SCOL,J) mF((SC0L41),J)

398 CONTINUE
SCO. a SCDt. + 1

400 CONTINUE
WRITE (6,410)

410 FORMAT (I X, 'F MATRIX')
IF ((SOURCE .EQ. 'PROJA9) .OR. (SOURCE .EQ. 'MCGL')) THEN
WRITE (6,412) ((F(I,J), J=1,22), lx1,(NLN-1))

412 FORMAT (22(1X,F5.2))
ENDIF

IF (SOURCE .EQ. 'PROJA29') THEN
WRITE (6,416) ((F(I,J), J219,31), 1=1,(NUM-1))

416 FORMAT C13(lX,F5.2))
END IF

C * SET VALUES FOR NEXT ITERATION
NUM x MUM - 1
NC - NC - NUM

450 CONTINUE
C * WRITE OUT FINAL F MATRIX
500 WRITE (6,501)
501 FORM4AT (/1X, 'FINAL F MATRIX AND JOB CLUSTERS')
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WJRITE (6,510) ((F(1,J), J=1,22), I=1,NUM4CLS)
510 FORMAT (22(IX,F5.2))
512 STOP

END
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APPENDIX H: SELECTION-EFFICIENT CLUSTERING PROGRAM

C------------------------------------------------------- C

C PROGRAM4: SELECTION-EFFICIENT CLUSTERING PROGRAM C

C PURPOSE: CLUSTER JOBS INTO 6, 9, OR 12 JOB FAMILIES C

C WHILE M4AXIMIZING PREDICTIVE VALIDITY C

C------------------------------------------------------- C
C
C * FUNCTIONS AND SUBROUTINES APPEAR FIRST IN THE PROGRAM
C
C *SUBROUTINE THAT INCREASES THE ROW DESIGNATORS AS NEEDED(CHOOSE 3)

C * CALL CHECK3CR ,R2,R3,X)
C * (FOR STAGE 1)

SUBROUTINE CHECK3(X,Y,Z,NAX)
INTEGER X, Y, Z, MAX
IF (X L.E. (MAX-?)) THEN

IF CY .EQ. (MAX-i)) THEN
X zX+1
Y 2 X+1
Z z Y+1
END IF

END IF
IF (Z GT. MAX) THEN

Y - Y+1
Z =Y*1
END IF

RETURN
END

C * SUBROUTINE THAT INCREASES THE ROW DESIGNATORS AS NEEDED(CHOOSE 2)

C * CALL CHECK2(R1,R2,X)
C * (FOR STAGE 1)

SUBROUTINE CHECIC2CX,Y,M4AX)
INTEGER X, Y, M4AX
IF (X .E. (MX-i) THEN

IF (Y GT. MAX) THEN
X a =
Y ax.1
END IF

END IF
RETURN
END

C * FUNCTION LOWR2 RETURNS ROW NUMBER WITH LOWEST R2 VALUE
C * ONLY CONSIDERS ROWS ELIGIBLE TO BE SELECTED
C *(FOR STAGE 2)

INTEGER FUNCTION LOWRZ(M,X.Y)
INTEGER X, Y, TEMPRW
REAL M, TEMPRL, t0V
DIMENSION M012,45)
LOW z 800.00
TEMPU 0
DO 20 1I 1,X

IF (M(I,(Y.2)) .EQ. 0.0) THEN
TEM4PRL - M(I,Y)
IF (TEMPRL .LT. LOW) THEN

LOW z TEMPRL
TEMPRW x I
END IF

END IF
20 CONTINUE

LOWR2 a TEM4PRW
RETURN
END

C *SUBROUTINE NIGHR2 RETURNS ROW NUMBER WITH THE HIGHEST R2 VALUE
C *CALL HIGHR2CNI1,PRCW,RN,Y*1)
C *(FOR STAGE 2)

SUBROUTINE HIGHR2(,FINAL,X,Y)
INTEGER X, Y, TEMPRW, 1, FINAL
REAL M, TEMPRL, HIGH
DIMENSION M012,45)
HIGH a-1.00
TEMPRW - I
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Do 40 1 = 1,X
TEMPRI = M(I,Y)

IF (TEMPRI .GT. HIGH) THEN
HIGH = TEMPRL
TEMPRW x I

END IF
40 CONTINUE

FINAL a TEMPRW
WRITE (6,45) FINAL

45 FORMAT (IX, 'HIGHEST R2:1, 12)
RETURN
END

C *SUBROUTINE CALC2 CREATES TEMPORARY MATRICES Ml AND M2 WHEN THERE
C *ARE ONLY 2 JOBS IN THE ROW TO BE COMBINED WITH ALL OTHER ROWS
C *CALL CALC2(V,CJOB,ROW,HOWNNY,NWI4CO.,Y,RN,M1,M2)
C *(FOR STAGE 2)

SUBROUTINE CALC2(M,X,Y,I,J,K,L,A1,A2)
INTEGER 1, J, K, L, A, N, X, Y
REAL M, Al, A2, TEMPI, TEMP2
DIM4ENSION M018,29), A1(12,45), A2(12,45), X(18), Y(18)
DO 60 N z 1,K

IF (N .E. I) THEN
Al(L,CN+K+3)) = Y(N)
A2(L,(N+*'3)) = Y(N)
END IF

TEMPI z 0
TEMP2 a 0
DO 55 A = 1,1

TEMPI = TEM4PI + M(YCA),N)
TEMP? TEMP2 + M(YA),N)

55 CONTINUIE
AI(L,N) z (TEMPI + MCX(1),N))I(I.1)
A2(L,N) = (TEMP2 + M(X(2),N))I(I+l)

60 CONTINUE
A1(L,(N+l)) z I + 1
A1(L,(N*2)) a I
AI(L,(N+A*2)) = XOl)
A2(L,(N+l)) z I + I
A2(L,(N*2)) a 1
A2(L,(N.A+2)) = X(2)
RETURN
END

C *SUBROUTINE CALC3 CREATES TEMPORARY MATRICES Ml, M2, M3 WHEN THERE
C *ARE 3 JOBS IN THE ROW TO BE COMB6INED WITH ALL OTHER ROWS
C *CALL CALC3(V,CJOB,ROW,HOW4NY,NUIMCOL,Y,RN,Ml,M2,M3)
C *(FOR STAGE 2)

SUBROUTINE CALC3(M,X,Y,I,J,K,L,A1,A2,A3)
INTEGER 1, J, K, L, A, N, X, Y
REAL M, Al, A2, A3, TEMPI, TEMP2, TEMP3
DIM4ENSION M018,29), Al102,45), A2012,45), A3(12,45)
DIM4ENSION X(18), Y(18)
DO SO N z 1,K

IF (M .E. 1) THEN
AI(L,(N'I+3)) xY(N)
A2(L,(N+K+3)) z Y(N)
A3(L,(N'K.3)) z Y(N)
END IF

TE14PI a 0
TEMP2 z 0
TEMP3 a 0
DO 75 A z 1,1

TEM4PI a TEMPI + M(YA),M)
TEMP2 a TEMP2 + M(Y(A),N)
TEMP3 - TEMP3 + M(Y(A),N)

75 CONT INUIE
Al(L,N) a (TEMPI + (~)M)IIl
A2(L,N) = (TEMP2 + M4(X(2),N))/(I.1)
A3(L,N) z (TEMP3 + M(X(3),N))I(I*1)

so CONTINUE
AI(L,(N+l)) z I + I
Al(L,(N42)) z I
Al(L,(N+A+2)) z X(1)
A2(L,(Nl)) a I + I
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A2(L,(N+2)) = I
A2(L,(N+A+2)) z X(2)
A3(L,(N4I)) = I + 1
A3(L,(N+2)) a I
A3(L,(N+A+2)) z X(3)
RETURN
END

C * SUBROUTINE AVGWR2 CALCULATES THE AVERAGE WEIGHTED R2 VALUE
C * CALL AVGWR2(TEMP1,NEWL1,Y+,Y+2,NJMCLS)

SUBROUTINE AVGWR2(M,VALUE,X1,Y1 ,Z)
INTEGER X1, YI, Z, I
REAL M, TEMP, VALUE
DIMENSION N12,45)
TEMP a 0
DO 90 1 z 1,z

TEMP z TEMP * (M(I,X1) * M(I,Y1))
90 CONTINUE

VALUE z TEMP/18
RETURN
END

C * SUBROUTINE COPYMX COPIES AN ENTIRE MATRIX ONTO ANOTHER MATRIX
C * CALL COPYNX(NEWRES,TENPY.NIMCLS) OR
C * CALL COPYMX(TEMP1,NEWRES,YNUNCLS)
C * (FOR STAGE 2)

SUBROUTINE COPYMX(A,BCD)
INTEGER I, J, C, D
REAL A, B
DIMENSION A12,45), B(12,45)
DO 100 1 a I'D

O0 99 J a 1,(C+16)
B(IJ) a A(I,J)

99 CONTINUE
100 CONTINUE

RETURN
END

C * SUBROUTINE CREAT2 WILL CREATE 2 TEMPORARY MATRICES WITH THE ROw
C * HAVING THE HIGHEST R2 FROM Ml AND M2, RESPECTIVELY, SUBSTITUTED
C * INTO TEMPI AND TEMP2-- IT WILL THEN BE POSSIBLE TO CALCULATE THE
C * AVERAGE WEIGHTED R2 TO DETERMINE IF ONE OF THESE SHOULD REPLACE
C * NERES
C * CALL CREAT2(V,RINV,Ml,M2,PROW1,PROU2,CJOB,Y,NUMCOL,NUMCLS,Y+16,
C * CROW,TEMPI, TEMP2)
C * (FOR STAGE 2)

SUBROUTINE CREAT2(A,R,B1,B2,Xl,X2,Y1,K,L,M,N,P,TP1,TP2)
INTEGER 1, J, K, L, N, N, P, Xl, X2, Y1
REAL A, R, B, C, TP1, TP2, SUM1, SUM2, 01, Q2
REAL HOLD1, HOLD2, RSQI, RSQ2
DIMENSION A(8,29), R(29,29), 81(12,45), 62(12,45), Y1(18)
DIMENSION TP1(12,45), TP2(12,45), HOLD1(29), HOLD2(29)
DO 140 1 a 1,M

IF (TPI(I,(K+4)) .EQ. BI(XI,(K+4))) THEN
DO 120 J = 1,N

TPI(I,J) a BI(X,J)
120 CONTINUE

END IF
IF (TP2(I,(K 4)) .EQ. B2(X2,(K44))) THEN

DO 130 J z 1,N
TP2(IJ) a B2(X2,J)

130 CONTINUE
END IF

140 CONTINUE
C FIX THE TEMPORARY MATRICES SO THAT THE CROW(CHOSEN ROW) WHICH HAS
C * ONLY ONE JOB LEFT HAS THE CORRECT V VECTOR, RECALCULATE R2, AND
C SET COUNTER CORRECTLY

DO 150 J a 1,K
TPI(P,J) x (A(YI(2),J))/(L-1)
TP2(PJ) - CA(Y (1),J))/(L-1)

150 CONTINUE
DO 160 1 - 1,K

SUN1a 0
SU2 a 0
DO 155 J a 1,K

01 • TPI(P,J) * R(JI)

H-3



SUM1 = SUM1 + 01
02 = TP2(PJ) * R(J,I)
SUM2 = SUM2 + 02

155 CONTINUE
HOLDI(I) = SUN1
HOLD2(I) = SUN2

160 CONTINUE
RSQ1 = 0
RS02 = 0
DO 170 J 2 1,K

01 = HOLDI(J) * TPU(P,J)
RSQ1 a RSQ1 + 01
02 = HOLD2(J) * TP2(P,J)
RS02 a RS02 + 02

170 CONTINUE
C * STORE R2 VALUE, COUNTER VALUE, AND JOB DESIGNATORS

TPI(P,J) = RSQ1
TP2(P,J) = RSQ2
TPI(P,(J+I)) a L-1
TP2(P,(J+1)) = L-1
TPI(P,(J 3)) = Y1(2)
TPI(P,(J 4)) = 0.0
TPI(P,(J+5)) z 0.0
TP2(P,(J+3)) = Y1(1)
TP2(P,(J+4)) = 0.0
TP2(P,(J+5)) z 0.0
RETURN
END

C * SUBROUTINE CREAT3 WILL CREATE 3 TEMPORARY MATRICES WITH THE ROW
C * HAVING THE HIGHEST R2 FROM Ml, M2, M3, RESPECTIVELY, SUBSTITUTED
C * INTO TEMP1,TEMP2,TEMP3. IT WILL THEN BE POSSIBLE TO CALCULATE THE
C * AVERAGE WEIGHTED R2 TO DETERMINE IF ONE OF THESE SHOULD REPLACE
C * NEWRES
C 0 CALL CREAT3(V,RINVM,M2,M3,PROW1,PROW2,PROW3,CJOB,Y,NLUMCOL,
C * NUMCLS,Y+16,CROWTEMP1 ,TEMP2,TEMP3)
C (FOR STAGE 2)

SUBROUTINE CREAT3(A,R,Bl,B2,B3,X1,X2,X3,Y1,K,LN,N,PTP1,TP2,TP3)
INTEGER 1, J, K, L, M, N, P, X1, X2, X3, Y1
REAL A, R, B, C, TPI, TP2, TP3, SUM|, SUrf2, SU(3, 01, 02, 03
REAL HOLDI, HOLD2, HOLD3, RSQ1, RSQ2, RS03
DIMENSION A(18,29), R(29,29), B1(12,45), B2(12,45), B3(12,45)
DIMENSION Y1(18), TP1(12,45), TP2(12,45), TP3(12,45)
DIMENSION HOLD1(29), HOLD2(29), HOLD3(29)
DO 250 1 1,M

IF (TPI(2,(K 4)) .EQ. BI(XI,(K+4))) THEN
DO 220 J z 1,N

TP1(I,J) = Bl(X1,J)
220 CONTINUE

END IF
IF (TP2(I,(K+4)) .EO. B2(X2,(K+4))) THEN

DO 230 J = 1,N
TP2(I,J) = B2(X2,J)

230 CONTINUE
END IF

IF (TP3(I,(K+4)) .EQ. B3(X3,(K+4))) THEN
DO 240 J a 1,N

TP3(IJ) = B3(X3,J)
240 CONTINUE

END IF
250 CONTINUE
C * FIX THE TEMPORARY MATRICES SO THAT THE CROW(CHOSEN ROW) WHICH HAS
C 0 TWO JOBS LEFT HAS THE CORRECT V VECTOR, RECALCULATE R2, AND
C SET COUNTER CORRECTLY

DO 252 J = 1,K
TP1(P,J) z (A(YI(2),J) + A(Y1(3),J))/(L-1)
TP2(P,J) = (A(Y(1),J) + A(Y1(3),J))/(L-1)
TP3(P,J) = (A(YI(1),J) + A(YI(2),J))/(L-1)

252 CONTINUE
DO 260 1 1,K

519(1 2 0
SUM2 a 0
SUO3 z 0
DO 255 J = 1,K
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01 - TP1(P,J) * R(J,I)
SM1 z SUMi + 01
Q2 z TP2(P,J) * R(J,I)
su.92 a 51142 + 02
03 . TP3(P,J) - R(J,I)
stSUM3 + Q 3

255 CONTINUE
HOLDIM z 5SJMl
HOLD2CI) z SU142
HOLD3(I) = 51N43

260 CONTINUE
RS01 a0
RS02 a0
RSQ3 - 0
Do 270 1J 1,K

01 z HOLD1(J * TPI(P,J)
RSQI z RSO1 + 01
02 - HOLD2(J) * TP2(P,J)
RSQ2 aRS02 + 02
03 zH04.D3(J) * TP2(P,J)
RS03 z RS03 + 03

270 CONTINUE
C - STORE R2 VALUE, COUNTER VALUE, AND JOB DESIGNATORS

TP CP,J) z RSO
TP2(PJ) zRS02
TP3(P,J) z RS03
TPI(P,(J+1)) xL-1
TP2CP,(J4' )) z L-1
TP3(P,(J.1)) zL-1
TP1CP,(J+3)) a Y1(2)
TPI(P,(Je4)) z Y1(3
TP1(P,(J+5)) = 0.0
TP2(P,CJ+3)) aY10l)
TP2CP,(J44)) = Y1(3
TP2CP,CJ.5)) a 0.0
TP3(P,(J.3)) a Y10i)
TP3(P,(J+4)) a Y1(2)
TP3CP,(J.5)) c 0.0
RETURN
END

C ----------------------------------------------------------- C
C MAIN PROGRAM (STAGE 1) C
C STAGE I WILL AVERAGE ALL POSSIBLE COMBINATIONS OF 3 OR C
C 2 ROWS DEPENDING ON THE CONDITION, CALCULATE R2 FOR C
C EACH ROW, PICK LARGEST R2, AND END UP WITH EITHER C
C 6, 9, OR 12 ROWS (ALL WITH DIFFERENT JOBS) WITH THE C
C HIGHEST R2. C
C ----------------------------------------------------------- C
C *DECLARE VARIABLES (BOTH STAGES)

REAL RINV, V, RES, TRES, TOTRV, WJLT, TOTAL, Pl. P2, P3
REAL HRES, NEWRES, Ml, M2, M3, TOTRVI, TOTRVZ, TOTRV3
REAL THl, TM2, TN3, TOTALI, TOTAL2, TOTAL3. WJLT , MULT2, NULT3
REAL TEMPi, TENP2, TEMP3, ORGVAL, NEWVL1, NEWVL2, NEUVL3
DIMENSION R1NVC29,29), V018,29), RES(816,33), TRES(29,816)
DIMENSION TOTRV(816,29). HRES(12,33), NEWRES(12,45)
DIMENSION M1012,45), 1M202,45), M3012,45)
DIMENSION TEMP12,45), TEMP2(12,45), TEMP3(12,45)
DIMENSION CJOB(18), ROW(18)
DIMENSION TOTRV 12,29), TOTRV2(12,29), TOTRV3C12,29)
DIMENSION TN1(29,12), TM2(29,12), T143(29,12)
INTEGER NUMCLS, 1, J, Y If, Rl, R2, R3, NC. VAL, P
INTEGER LOCLIG, K, L, f14OW, NUNCOL, HOWNNY, COUNT, RN, G
INTEGER CJOS, ROW, PROWl, PROW2. PROW3
CHARACTERad SOURCE

C VARIABLES THAT WILL NEED TO BE CHANGED FOR EACH
C DIFFERENT CONDITION
C *NUMBER OF CLUSTERS (06, 09, OR 12)

NIIICLS m 12
C *DATA SOURCE (PROJA29, PROJA9, OR MCGL)

SOURCE a 'PROJA29'
C *NUMBER OF ROWS IN VALIDITY MATRIX

X z Is
C NUER OF COLUMNS IN VALIDITY MATRIX
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y=29
C * CHOOSE VALUE (03 OR 02)

VAL- 2
C * VALUE AFTER CALCULATION OF N CHOOSE M VALUE (816 OR 153)

NC = 153
C * READ IN DATA FILES

IF (SOURCE .EQ. 'PROJA29') THEN
READ (5,36) ((RINV(I,J), J=1,29), 1=1,29)

READ (5,36) ((V(I,J), J=1,29), 1=1,18)

36 FORMAT (29(IX,F9.6))
END IF

IF (SOURCE .EQ. IPROJA9') THEN
READ (5,1.0) ((RINV(I,J), J=1,9), 1=1,9;
READ (5,40) ((V(I,J), J=1,9), 1=1,18)

40 FORMAT (8(1X,F9.6)/F9.6)
END IF

IF (SOURCE .EQ. IMCGLI) THEN
READ (5,40) ((RINV(I,J), J=1,9), 1=1,9)
READ (5,40) ((V(I,J), J=1,9), Ii1,18)

C WRITE (6,50) ((RINV(I,J), J=1,9). 1=1,9)

C WRITE (6,50) ((V(I,J), J=1,9), u11,18)

C 50 FORMAT (9(1X,F9.6))
END IF

C * ZERO OUT RESULTS MATRICES
DO 120 1 a 1,NC

DO 119 J a 1,(Y+4)
RES(1,J) = 0
TOTRV(I,J) = 0
TRES(J,I) 0

119 CONTINUE
120 CONTINUE

IF (VAL .EQ. 3) GO TO 130
IF (VAL .EQ. 2) GO TO 150

C * CALCULA'r THE RESULTS MATRIX FOR CHOOSE 3 VALUE
C * ROW DESIGNATORS PLACED IN THE LA3T THREE COLUMNS OF RESULTS MATRIX

130 R1 a1
R2 = R1 + 1
R3 = R2 + 1
DO 140 1 a 1,NC

CALL CHECK3(R1,R2,R3,X)
DO 135 1 • 1,Y

RES(I,J) = (V(RI,J) * V(R2,J) * V(R3,J))/3.O
135 CONTINUE

VESCI,J) = Ri
RES(I,J+I) a R2
RES(I,J 2) x R3
R3=R3+ 1

140 CONTINUE
C * PRODUCE THE OUTPUT TO CHECK PROGRAM
C WRITE (6,145) ((RES(I,J), J=I,(Y+VAL)), I=I,NC)

C 145 FORMAT (12(IX,F6.3))
GO TO 175

C a CALCULATE THE RESULTS MATRIX FOR CHOOSE 2 VALUE
C a ROW DESIGNATORS PLACED IN THE LAST TWO COLUMNS OF RESULTS MATRIX

150 R1 a1
R2 - R1 + I
DO 170 1 a 1,NC

CALL CHECK2(R1,R2,X)
DO 155 J m 1,Y

RES(I,J) = (V(R1,J) + V(R2,J))/2.0
155 CONTINUE

RES(IJ) = RI
RES(I,J 1) - R2
R2 x R2 + 1

170 CONTINUE
C * PRODUCE THE OUTPUT TO CHECK PROGRAM
C WRITE (6,172) ((RES(I,J), J=1,(Y+VAL)), I11,NC)
C 172 FORMAT (11(1X,F6.3))
C
C * FOR THE 12 JOB CLUSTERS CONDITION THE ORIGINAL 18 BY Y VALIDITY

C * MATRIX MUST BE ADDED TO THE BOTTOM OF THE RESULTS MATRIX
175 IF (NUMCLS .EO. 12) THEN

P a1

H-6



DO 190 1 = (NC+I), (NC+X)
DO 185 J = 1,Y

RES(I,J) = V(P,J)

185 CONTINUE
RES(I,J) = P
RES(I,J+l) = P
P i P+2

190 CONTINUE
NC -NC 18
END IF

C
C * TRANSPOSE RESULTS M4ATRIX (I.E., TRANSPOSE AVERAGE VALIDITY MATRIX)

DO 200 1 z 1,NC
DO 199 J = 1,Y

TRES(JI) = RES(1,J)
199 CONTINUE
200 CONTINUE
C
C * THE NEXT SECTION CALCULATES V * R(INVERSE) * V(TRANSPOSED)
C * AND OUTPUT R2 AS ANOTHER COLUMN IN THE RESULTS MATRIX

DO 220 1 - 1,NC
DO 219 P a 1,Y

TOTAL a 0
DO 217 J = 1,Y

MULT = RES(I,J) * RINV(J,P)
TOTAL = TOTAL + MULT

217 CONTINUE
TOTRV(I,P) = TOTAL

219 CC'TINUE
220 CONTINUE

DO 230 1 a 1,NC
TOTAL a 0
DO 228 J t 1,Y

MULT • TOTRV(I,J) * TRES(J,I)
TOTAL * TOTAL + NULT

228 CONTINUE
RES(I,(Y+VAL+I)) 2 TOTAL

230 CONTINUE
C * PRODUCE THE OUTPUT TO CHECK PROGRAM
C WRITE (6,235) ((RES(I,J), J=I,(Y+VAL+1)), '=1,NC)
C 235 FORMAT (33(X,F6.3))
C
C THE NEXT SECTION WILL LOCATE THE LARGEST R2S, AND STORE THE DATA
C * IN THESE ROWS CORRESPONDING TO THE LARGEST R2
C * ALL OTHER R2 VALUES ARE SET TO ZERO WHENEVER THE SANE JOB #'S
C H HAVE ALREADY BEEN SELECTED

DO 400 K z 1, NUNCLS
LOCLRG a 1
J a Y + VAL + 1

C FOR 12 CONDITION MUST DO SOMETHING DIFFERENT WHEN K > 6
IF (NtMCLS .EQ. 12) THEN

IF (K .GT. 6) GO TO 405
mC v NC-18
END IF

C * LOCATE LARGEST R2 VALUE
DO 260 1 c 2,NC

IF (RES(I,J) .GT. RES(LOCLRG,J)) THEN
LOCLRG = I
END IF

260 CONTINUE
C * CREATE TEMPORARY HRES MATRIX TO STORE THE EVOLVING CLUSTERS

DO 270 L a 1,J
NRES(KL) a RES(LOCLRG,L)

27'0 CONTINUE
C * SET R2 VALUES TO ZERO THAT HAVE THE SANE JOB DESIGNATORS

IF (VAL .EQ. 3) GO TO 300
IF (VAL .EQ. 2) GO TO 350

300 1 2 RES(LOCLRG,(J-3))
P2 s RES(LOCLRG,(J-2))
P3 a RES(LOCLRG,(J-1))
DO 330 1 a iNC

IF ((P1 .EQ. RES(I,(J-3))) .OR. (PI .EQ. RES(I,(J-2))) .OR.
+ (P1 .EQ. RES(I,(J-1)))) THEN

H-7



RES(I,J) = 0
END I F

IF ((P2 .EQ. RES(I,(J-3))) .OR. (P2 .EQ. RES(I,(J-2))) .OR.
+ (P2 .EQ. RES(I,(J-1)))) THEN

RES(I,J) = 0
END IF

IF (W3 .EQ. RES(I,(J-3))) .OR. (P3 .EQ. RES(I,(J-2))) .OR.
+ (P3 .EQ. RES(I,(J-1)))) THEN

RES(I,J) = 0
END IF

330 CONTINUE
GO TO 400

350 P1 =RES(LOCLRG,(J-2))
P2 =RES(LOCLRG,(J-1))

356 IF (NUMCLS EQ. 12) THEN
WC =NC+18
END IF

DO 380 I 1,NC
IF ((P1 .EQ. RES(I,(J-2))) .OR. (P1 .EQ. RES(I,(J-1)))) THEN

RES(I,J) = 0
END IF

IF ((P2 .EQ. RES(I,(J-2))) .OR. (P2 .EQ. RES(I,(J-1)))) THEN
RES(I,J) =0
END IF

380 CONTINUE
400 CONTINUE
C *FOR THE 12 CLUSTER CONDITION THE HIGHEST R2 FOR 6 SINGLE JOBS
C M UST BE IDENTIFIED AND ORDERED
405 IF CNUMCLS .EQ. 12) THEN

Do 420 K 7,12
LOCLRG NC-17
J = Y+VAL+1
DO 410 I = (NC-16),NC

IF (RES(I,J) .GT. RES(LOCLRG,J)) THEN
LOCLRG = I
END IF

410 CONTINUE
C * FOR THE 12 CLUSTER CONDITION FINISH THE LAST 6 ROWS OF HRES
C * AND SET R2 VALUE TO ZERO FOR THAT ROW

DO 415 L = 1,J
HRES(K,L) RES(LOCLRG,L)

415 CONTINUE
RES(LOCLRG,J) =0

420 CONTINUE
END IF

C * WRITE OUT INITIAL CLUSTERS (STORED IN HRES)
C WRITE (6,422)
C 422 FORMAT (/1X, 'INITIAL CLUSTERS')
C IF (VAL .EQ. 3) THEN
C IF (SOURCE .EQ. IPROJA29') THEN
C WRITE (6,424) ((HRES(I,J), J=1,33), 1=1,NUMCLS)
C 424 FORMAT (33(1X,F5.2))
C GO TO "0
C END IF
C WRITE (6,426) ((HRES(I,J), J=1,13), I=1,NUMCLS)
C 426 FORM4AT (13(1X,F6.3))
C END IF
C IF (VAL .EQ. 2) THEN
C IF (SOURCE .EQ. 'PROJA29') THEN
C WRITE (6,428) ((HRES(I,J), J=1,32), 1=1,NUNCLS)
C 428 FORMAT (32(1X,F5.2))
C GO TO4"0
C END IF
C WRITE (6,430) ((HRES(I,J), J=1,12), 1=1,NLRICLS)
C 430 FORMAT (12(1X,F6.3))
C END IF
C ----------------------------------------------------------- c
C STAGE?2 C
C STAGE 2 WILL SHRED OUT THE INITIAL SET OF CLUSTERS TO C
C DETERMINE IF THERE IS A MORE OPTIMAL COMBINATION OF JOBS C
C THAN THE INITIAL CORE CLUSTERS. C
C ----------------------------------------------------------- C
C
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C* CREATE MATRIX NEURES THAT IS THE SAME AS THE HRES MATRIX
C* BUT WITH THE COLUMNS AT END OF MATRIX IN DIFFERENT PLACES.
C* THIS GIVE UNLIMITED SPACE TO STORE THE JOB DESIGNATORS.
C * R2 VALUE STORED IN COLUMN 10 (OR 30)
C * A COUNTER VALUE STORED IN COLUMN 11 (OR 31)
C * A NSELECTEDN DESIGNATOR STORED IN COLUMN 12 (OR 32)
C * JOB DESIGNATORS ARE STORED IN COLUMNS 13 (OR 33) ON.
C * STORE DATA VALUES FIRST
440 DO 450 1 = I,NUMCLS

DO 449 J z lY
NEWRES(I,J) = HRES(I,J)

449 CONTINUE
450 CONTINUE
C * STORE R2 AND INITIALIZE "SELECTEDN VALUE TO ZERO

DO 455 I =1,NUMCLS
NEWRES(I,(Y+1)) = HRES(I,(Y.VAL+1))
NEWRES(I,(Y+3)) = 0

455 CONTINUE
C * STORE JOB DESIGNATORS AND CREATE COUNTER

IF (VAL .EQ. 3) THEN
DO 460 I - 1,NUMCLS

NEWRES(I,(Y44)) z NRESCI,(Ye1))
NEWRES(I,(Y.5)) z HRES(I,(Y+2))
NEWRES(I,(Y46)) =HRES(I,(Y+3))
NEWRES(I,(Y"2)) = 3.0

460 CONTINUE
END IF

IF (VAL .EQ. 2) THEN
DO 470 1 = I,NUMCLS

NEWRES(I,(Y+4)) =HRES(I,(Y+1))
NEWRES(I,(Y+5)) = HRES(I,(Y+2))
NEWRES(I,(Y.2)) =2.0

470 CONTINUE
END IF

IF (NUMCLS .EQ. 12) THEN
DO 475 I z 7,12

NEWRES(I,(Y+2)) z 1.0
NEWRES(I,(Y.3)) = 1.0

475 CONTINUE
END IF

WRITE (6,483)
483 FORMAT (/1X, 'NEWRES MATRIX')

WRITE (6,485) ((NEWRES(I,J), J=(Y+1),(Y*VAL+3)), 1=1,NUMCLS)
485 FORMAT (5(1X,F6.3))
C
C * CALCULATE THE INITfIAL AVERAGE WEIGHTED R2 VALUE FOR NEWRES

CALL AVGWR2(NEWRES,ORGVAL,Y+1 ,Y+2,NUIMCLS)
WRITE (6,490) ORGVAL

490 FORXAT(/1X, 'INITIAL R2 VALUE FOR NEWRES:,1X,F8.6)
C
C * INITIALIZE THE ITERATION COUNTER

G -0
C
C * INITIALIZE MI, 142, 143, TEMPI, TEMP2, TEMP3
500 DO 505 1 = 1,NUMCLS

Do 504 .1 z 1,(Y+16)
0410,J) z 0
M2(I,) - 0
M3(I,J) = 0
TEMP1(I,J) a 0
TEMP2(I,J) z 0
TEMP3(1,J) = 0

504 CONTINUE
505 CONTINUE
C * INITIALIZE TOTRV1, TOTRV2, TOTRV3 TO BE USED IN CALC OF R2

DO 510 1 z 1,NUMCLS
Do 509 J = 1,Y

TOTRV1(I,J) - 0
TOTRV2(1,J) = 0
TOTRV3(I,J) = 0

509 CONTINUE
510 CONTINUE
C
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C * CHOOSE THE ROW FROM NEURES TO BE COMBINED (ONE JOB AT A TIME)
C * WITH THE OTHER ROWS

CROW = LOWR2(NEWRES,NUNCLS,(Y+1))
C
C * THE NEXT STATEMENT PROVIDES THE LOOP TO END THE PROGRAM IF ALL
C * ROWS THAT ARE ELIGIBLE TO RE SELECTED HAVE BEEN SELECTED

IF (CROW .GT. 0) THEN
G =G. 1

C
C * SET THE NSELECTED" VALUE TO 1 FOR THE CROW JUST CHOSEN

NEWRES(CROW,(Y+3)) - 1.0
C * OBTAIN THE COUNTER VALUE FOR THIS ROW

NLDICO. - INT(NEWRES(CROW,(Y+2)))
C * OBTAIN THE JOB DESIGNATORS FOR THIS ROW

DO 530 I=1,NUMCOL
CJOB(I) =INT(NEWRES(CROW,(Y+3+1)))

530 CONTINUE
C
C * CREATE THE TEMPORARY M4ATRICES 0M1,92,03)

RN z0
DO 550 1 = 1,NIIICLS

IF (I WNE. CROW) THEN
RN xRN + 1
MOOI4NY = NT(NEWRES(I,(Y+2)))
DO 540 K i,1HOWMNY

ROW(K) INT(NEWRES(I,(Y+3+K)))
540 CONTINUE

IF (NLR4COL .EQ. 2) THEN
CALL CALC2(V9CJOB,ROW,HOW4NY,NUNCOL,Y,RNM1 .M2)
END IF

IF (NUMCO. .EQ. 3) THEN
CALL CALC3(V, CJOB, ROW, HOWMNY, NUMCOL, Y, RN, MI, M2, M3)
END IF

END IF
550 CONTINUE
C
C * TRANSPOSE Ml, M2, AND M3 TO BE USED IN THE CALC OF R2

DO 570 1 =1,(NUNCLS-1)
Do 569 J = 1,Y

TNI(J,I) z l(I,J)
TM2(J,I) mM2(1,J)
IF CNUMCOL .EQ. 2) GO TO 569
TM43(J,I) z M3(1,J)

569 CONTINUE
570 CONTINUE
C * CALCULATE R2 VALUE FOR Ml, N?2, M3 (ONLY CALCULATES R2 FOR M3 IF
C *NLN4COL EQUALS 3)

DO 650 1 z 1,(NIlMCLS-1)
DO 645 P =1,Y

TOTALI 0
TOTAL2 =0
TOTAL3 =0
DO 600 J = 1,Y

MULT1 = M1(IJ) * RINVCJ,P)
TOTALI z TOTALI + MULTI

600 CONTINUE
TOTRVI(I,P) = TOTALI
DO 620 J x ,Y

MULT2 z M20I,) * RINV(J,P)
TOTAL? x TOTAL? + MULT2

620 CONTINUE
TOTRV2(I,P) z TOTAL?
IF (NIJOCOL .EQ. 2) GO TC 645
DO 630 J a 1,Y

PSJLT3 z N3(I,J) * RINV(J,P)
TOTAL3 - TOTAL3 + WJLT3

630 CONTINUE
TOTRV3(I,P) a TOTAL3

645 CONTINUE
650 CONTINUE

DO 730 1 i,(NUMCLS-1)
TOTALl =0

TOTAL? 0
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TOTAL3 = 0
D0 710 J =1,Y

MULTI = TOTRV1(I,J) * TM1(JI)
TOTALl = TOTALI + MULTI
MULT2 zTOTRV2(I,J) * TM42(J,I)
TOTAL2 = TOTAL2 + MULT2
IF (NIA4COL .EQ. 2) GO To 710
MULT3 =TOTRV3(I,J) * T143(J.I)
TOTAL3 TOTAL3 + MULT3

710 CONTINUE
Ml(I,(Y*1)) = TOTALl
M2(I,(Y+1)) = TOTAL2
IF (NUNCOL .EQ. 2) GO TO 730
M3(I,(Y+1)) = TOTAL3

730 CONTINUE
WRITE (6,735) G

735 FORMAT (I1X, -ITERATION NUMBER:', 1X, 12)
C * WRITE OUT COUNTERS AND JOB NUMBERS FOR Ml, M2, AND M3
C* TO CHECK THE PROGRAM

WRITE (6,770)
770 FORMAT (fIX, 'Mi')

WRITE (6,772) ((MI(I,J), J=(Y.1),(Y+16)), 1=1,(NUMCLS-1))
772 FORM4AT (16(1X,F6.3))

WRITE (6,774)
774 FORMAT (/tX, 'M2')

WRITE (6,772) (0M2(1,J), J=(Y.1),(Y416)), I=1,(NUNCLS-1))
IF (NUNCOL .EQ. 2) GO TO 800
WRITE (6,776)

776 FORM4AT (fiX, 'M3')
WRITE (6,772) ((M43(I,J), J=(Y. ),(Y+16)), I=1,(NUMCLS-1))

C
C *THE NEXT SECTION PULLS OUT THE HIGHEST R2 FROM MI, M2, 143,
C *SUBSTITUTES THE APPROPRIATE ROWS TO CREATE A NEW HTEMPU
C MATRIX, CALCULATES THE AVERAGE WEIGHTED RZ FOR EACH TEMP M4ATRIX AND
C *PICKS THE HIGHEST WEIGHTED AVERAGE C0OMBINATION AS THE NEW "NEWRES"
800 IF (NUNCOL .EQ. 2) THEN

CALL HIGHR2(N1 ,PROW1 ,RN,Y'-i)
CALL HIGHR2(M2,PROWZ,RN,Y41)
CALL COPYMX(NEWRES,TEMP1 ,Y,NUMCLS)
CALL COPYNX(NEWRES,TEMP2,Y,NUMCLS)
CALL CREAT2(V,RINV,M1 ,M2,PROW1,PROW2,CJOB,Y,NUM4COL,NUM4CLS,

+ Y.16,CROW,TENPI,TEMP2)
CALL AVGWR2(TEM4P1,NEWVL1 ,Y.1 ,Y+2,NUNCLS)
CALL AVGWR2(TEMP2, NEWL2, Y+1 0 Y+2, NUMCLS)

C *WRITE OUT TEMP M4ATRICES AND WEIGHTED R2 VALUES TO CHECK PROGRAM
WRITE (6.820)

820 FORMAT (fiX, 'TEMPORARY MATRIX 1')
WRITE (6,822) ((TEMP1(I,J), J=(Y+1),(Y.16)), I=1,NUMCLS)

822 FORMAT (16(1X,F6.3))
WRITE (6,824)

824 FORMAT (fiX, 'TEMPORARY MATRIX 2')
WRITE (6,822) ((TEMP2(I,J), J=(Y+1),(Y+16)), I=1,NUMCLS)
WRITE (6.826) .*EWVLI

826 FORMAT (fix, 'TEMPI WEIGHTED R2:1, IX, F8.6)
WRITE (6,828) NEWL2

828 FORMAT (fiX, 'TEMP2 WEIGHTED R2:', IX, F8.6)
C * COMPARE WEIGHTED R2 VALUES WITH ORIGINAL WEIGHTED R2
C * MATRIX WITH THE HIGHEST WEIGHTED R2 BECOMES THE NEW "NEURES"

IF (NEWVI .GT. ORGVAL) THEM
CALL COPYMX(TEMPI ,NEWRES,Y,NUMCLS)
ORGVAL a NEWLi
END IF

IF (NEWL2 .GT. ORGVAL) THEN
CALL COPYMX(TEMP2,NEWRES,Y,N.RCLS)
ORG VAL aNEWVL2
END IF

WRITE (6,850)
850 FORMAT (/IX, -THE NEW SET OF JOB CLUSTERS')

WRITE (6,852) (CNEWRES(I,J), J=(Y41),(Y.16)), 1=1,NUMCLS)
852 FORMAT (16(1X,F6.3))

WRITE (6,854) ORGVAL
854 FORM4AT (/IX, 'WEIGHTED R2 EQUALS:', 1X, F8.6)

GO To 500
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END I F
I F (NUMCOL .EQ. 3) THEN

CALL HIGHR2(M1,PROWI,RN,Y+1)
CALL HIGHR2(M2,PROW2,RN,Y+1)
CALL HIGHR2(M3,PROW3,RN,Y+l)
CALL COPYNX(NEWRES,TEMP1 ,Y,NUMCLS)
CALL COPYNX(NEWRES,TEMP2,Y,HUMCLS)
CALL COPYMX(NEWRES,TEM4P3,Y,NUMCLS)
CALL CREAT3(V,RINV,M1 ,M2,143,PROW1 ,PROW2,PROW3,CJOB,Y,

+ NLNCOL,NINCLS,Y*16,CROW,TEMP1,TENP2,TEMP3)
CALL AVGW.R2(TEN4P1,NEWVL1 ,Y+1 ,Y+2,NUMCLS)
CALL AVGWR2(TEMP2,NEWVL2,YGI ,Y+2,NUNCLS)
CALL AVGWR2(TEMP3,NEWVL3,Y+1,Y+2,NLI4CLS)

C *WRITE OUT TEMP MATRICES AND WEIGHTED R2 VALUES TO CHECK PROGRAM
WRITE (6,880)

880 FORMAT (A1X, 'TEMPORARY MATRIX 11)
WRITE (6,882) ((TEMP1(I,J), J=(Y+1),(Y+16)), I=1,NUI4CLS)

882 FORM4AT (16(1X,F6.3))
WRITE (6,884)

884 FORMAT UlX, 'TEMPORARY MATRIX 2')
WRITE (6,882) ((TEMP2(1,J), J=(Y.1),(Y+16)), I=1,NUHCLS)
WRITE (6,886)

886 FORM4AT UlX, 'TEMPORARY MATRIX 3')
WRITE (6,882) ((TEMP3(i,J), J=(Y+1),(Y+16)), I=1,NUI4CLS)
WRITE (6,88) NEWVLl

888 FORM4AT (IX, ITEMPi WEIGHTED R2:1, IX, F8.6)
WRITE (6,890) NEWVL2

890 FORMAT C/tX, 'TEMP2 WEIGHTED R2:-, IX, F8.6)
WRITE (6,900) NEWVL3

900 FORMAT C/tX, 'TEMP3 WEIGHTED R2:6, IX, F8.6)
C * COMPARE WEIGHTED R2 VALUES WITH ORIGINAL WEIGHTED R2.
C *MATRIX WITH THE HIGHEST WEIGHTED R2 BECOM4ES THE NEW UNEWESI

WRITE (6,910) ORGVAL
910 FORM4AT C/tX, lORGVAL 1, F8.6)

IF (NEWLI GT. ORGVAL) THEN
CALL COPYMX(TEMPI ,NEWRES,Y,NUMCLS)
NEwRES(CROW,(Y+3)) = 0.0
ORGVAL rNEWLI
END IF

IF (NEWL2 .GT. ORGVAL) THEN
CALL COPYNX(TEMP2,NEWRES,Y,NUMCLS)
NEWRES(CROW,(Y+3)) = 0.0
ORGVAL z NEWL2
END IF

IF (NEWVL3 .GT. ORGVAL) THEN
CALL COPYMX(TEMP3,NEWRES,Y,NUMCLS)
NEWRES(CROW,(Y.3)) = 0.0
ORGVAL = NEWVL3
END IF

WRITE (6,950)
950 FORMAT (/1X, 'THE NEW SET OF JOB CLUSTERS')

WRITE (6,952) ((NEWRES(I,J), J=(Y41),(Y+16)), I=1,NUMCLS)
952 FORMAT (16(1X,F6.3))

WRITE (6,954) ORGVAL
954 FORM4AT (IX, 'WEIGHTED R2 EQUALS:', 1X, F8.6)

GO TO 500
END IF

END IF
STOP
END
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APPENDIX I: PSEUDO-RANDOM NUMBER GENERATOR

1. FORTftA SOURCE CE (Davis Johnson. October, 1989)~

PROGRAM GENX2
$INCLUDE: RANDOM.INC'

INTEGER IAJP
C * DECLARE NORMAL RANDOM'FUNCTION

REAL NORMAL
EXTERNAL NORMAL

C - DECLARE FLOOR (LARGEST INTEGER LESS THAN) FUNCTION
INTEGER FLOOR
EXTERNAL FLOOR
REAL XY
REAL SUM(1:6)
INTEGER SAMPI.E(-100:100),OUT.IN
DATA SAMPI.E/201 '0/

C * INITALIZE RANDOM NUMBER GENERATOR INTERNAL DATA STRUCTURES
CALL RANDINrT

C *CREATE OUTPUT FILE
OPEN(7ILE-XX.DAT)

C *GENERATEX MATRIXOF 17BY NN
CALL GENX
STOP
END

REAL FUNCTION NORMALO
C
C
C FUNCTION: NORMAL
C PURPOSE: GENERATE A NORMALY GENERATED RANDOM NUMBER BY SUMMING
C UNIFORMLY DISTRIBUTED NUMBERS.
C CALLING SYNTAX.
C REAL NORMAL
C EXTERNAL NORMAL
C X-NORMALO
C where:
C X RECEIVES A "NORMALLYSELECTED VALUE

$INCLUDE: RANDOM.INC*
INTEGER I
REAL RANDOM
EXTERNAL RANDOM
REAL NORMALIZE(0:39)
DATA NORMALIZEJ-2.3182. -1.8123. -1.5509. -1.3676, -1.2M,2

*-1.0988. -0.9904, -0.8924. -0.8020. -0.7177,
*-0.6883, -0.5627. -0.4901, -0.4202, -0.4523.

+ -0.2660. -0.2196. -0.1568. -0.0934. -0.0304.
+ 0.0304. +0.0934, .0.1568. .0.2196. +0.2860.
+ 0.4523. .0.4202. .0.4901, +0.5627. .0.6883,

+ .0.7177. .0.8020. +0.8924, .0.9904. .1.-0988,
+ 1.2M22 +1.3676. .1.5509. .1.8123, .2.31821

NORMAL=0.0
IF(TFLAG.E. )THEN

DO I I.1.UNIFORM
NORMAL- NORMAL+ RANDOMO0

I CONTINUE
ELSE

1Atgorith.. from Park and Mitter (1988); n.Jttiptlers from Fishman and Moore (1986).



DO 2 I=1.NUNIFORM
NORMAI.=NORMAL+NORMALIZE(INT(RANDOMO/O.025))

2 CONTINUE
END IF
NORMAL=(NORMAL.OFFSET) 'SCALE
RETURN
END

REAL FUNCTION RANDOM
C
C
C FUNCTION: RANDOM
C PURPOSE: GENERATE A UNIFORMLY DISTRIBUTED RANDOM NUMBER USING THE
C ALGORITHIM PROPOSED IN 'RANDOM NUMBER GENERATORS: GOOD
C ONES ARE HARDOTO FIND" CACM. 10/88
C CALLING SYNTAK
C REAL RANDOM
C EXTERNAL RANDOM
C X-RANDOMO
C where:
C X RECEIVES A *RANDOM LY"SELE CTED, WHERE 0.0<c=X<1l.0
C
C +
$INCLUDE: 'RADOM.INC'

REAL'8 MODULUS
PARAMETER (MODULUS=2 147 483 647.000)

SEED(S.M)=DMOD(SEED(S,M)-MULT(M).MODULUS)
RANDOM=SEED(S.M)/MODULUS

C * SELECT NEXT MULTIPLIER
M=MOO(M.1 .NMULTS)

C * SELECT NEXT SEED SEQUENCE
IF(M.EO) r3=MOD(S.1.NSEEDS)
RETURN
END

SUBROUTINE RANDINIT
C +
C
C SUBROUTINE: RANDINIT
C PURPOSE: INMAIZE DATA STRUCTURES REQUIRED BY THE RANDOM NUMBER
C GENERATION ROUTINES.
C SYNTAX: CALL RANDINIT
C

REAL*8 MODULUS
PARAMETER (MODULUS-2 147 483 647.ODO)
INTEGER W,
REAL*8 LSEED

$INCLUDE: RANDOM.INC'
C * PROGRAMMINGNOTE: THIS IS AN EXAMPLE OF HOW TO DO A WHILE' LOOP,
C IN THIS CASE, WHILE NMULTS4O DO...'

NMULTS-O
1 IF(NMULTS.LT.1 ,OR. NMULTS.GT.MAXMULTS)THEN

WRITE(6.'(" USING A DIFFERENT MULTIPLIER RESULTS IN')')
WRrTE(6,'(" A DIFFERENT RANDOM NUMBER SEQUENCE.-Il

WRITE(6,
* (" ENTER NUMBER OF DIFFERENT MULTIPLIERS TO USE: "$)I
READ(5,'(13)INMULTS
GOTO I

END IF
NUNIFORM-0

2 IF(NUNIFORM.LT.1.OR. NUNIFORM.GT.200)THEN
WRITE(6.'(" NORMAL DEVIATES ARE PRODUCED BY SUMMINGA-1)
WRITE(6,

+ 'C' NUMBER OF UNIFORM DEVIATES. THIS NUMBER MAY BE')')
WRrTE(6.'(" THE SAME AS THE NUMBER OF MULTlPLIERS"1))
WRffE(6:' ENTER NUMBER OF UNIFORM DEVIATES TO USE: "')1
READ(5.'(13)')NUNIFORM
GOTO 2

END IF
NSEEDS.'O
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3 IF(NSEEDS.LT.1 .OR. NSEEDS .GT. MAXSEEDS)THEN
WRrrE(6.T( USING A DIFFERENT SEED RESULTS IN THE RANDOM")')
WRITE(6.'(" SEQUENCE STARTING AT A DIFFERENT POINT.-J)
WRITE(6.'( ENTER THE NUMBER OF SEEDS PER MULTIPLIER:"))
READ(5,'(13)NSEEDS
GOTO 3

END IF
TFLAG-O

4 IF(rFLAG.LT.1 .OR. TFLAG.GT.2)THEN
WRITE(6,
Sf- THE UNIFORMLY DEVIATES MAY BE TRANSFORMED INTO")')
WRITE(6,

'(" NORMAL DEVIATES BY A TABLE LOOKUP PROCESS BEFORE'))
WRrTE(6.'C SUMMING.")')
WRITE(6,

+ , ( ENTER 1 TO DISABLE TRANSFORMATION.2 TO ENABLE: 5'
READ(5,)TFLAG
GOTO 4

END IF
IF(rFLAG.EO.2THEN

OFFSET-0
SCALE.SORT(NUNIFORM)/NUNIFORM

ELSE
OFFSET-NUNIFORMI2.o
SCALE.SORT(1 2.0/NUNIFORM)

END IF
C *INITALIZESEED ARRAY USING A 'PRIVATE' GENERATOR

LSEED-O
5 IF(LSEED.EGO)THEN

WRrTE(6,'(" ENTER THE INMALIZAT1ONSEED: "5)')
READ(5.-)LSEED
GOTO 5

END IF
DO 7 I=,NSEEDS-1

DO 6 J=O.NMULTS-1
LSEED=DMOO(LSEED*170431 8220.MODULUS)
SEED(IAJ)LSEED

6 CONINUE
WRITE(6," ",1OFi 2.0)')(SEED(I.J),J=0O.NMULTS-1)

7 CONTINUE
WRITE(6,'(" NEXT INmTALIZATIONSEED: ".F12.0)')LSEED
RETURN
END
INTEGER FUN CTION FLOOR(X)
REAL X
IF(X.LT.0.0)THEN

FLOOR=INT(X)-l
ELSE

FLOOR=INT(X)
END IF
RETURN
END

C * SUBROUTINE TO GENERATE X MATRIX OF RND'S
SUBROUTINE GENX
INTEGER IJ,NN
REAL XSAMPLE(30,600)
REAL NORMAL
EXTERNAL NORMAL

SIN CLUDE: TRANDOM.INC'
WRrTE(e,'C' ENTER SAMPLE SIZE: "5)')
READ(5,')NN
DO 2 I=1.MULTS

DO I J-1.NN
XSAMPLE(I.J)=NORMALO

1 CONTINUE
2 CONTINUE

C WRITE(7.-)NN
WRffE(7) ((XSAMPLE(IJ),J=1.NN).I-1,20)
RETURN
END

BLOCK DATA

1-3



SINCLUDE:'RANDOM.INC'
DATA MULT/1483834601 00,1 03756696000, 74372248600.150908993700,
+ 158769947800.194730693700,107653209700,195781 172700,
+ 62846714800.104089539300. 78682443500. 55653082400.
+ 8792129000. 1457913431 DO. 38578745900,156731653200.
+ 93095034100.158881346500.103551921900, 369444500.
+ 189135697300,189741229200.75468073900.197120481200.
+ 188884779800,157164163400.111743555400, 560170662M0.
+ 92740725900,149069026700. 23571697700, 14928962500.
+ 166057612900,1 517266187DO,122988101200, 70765627900.
+. 186909573400. 99558048400. 53914626800.160418717900.
+ 208215022000. 370594724D0.2044924591 DO. 91610078700.
+ 103741412600.183812241000.126543848400,100780470900
+ 12574318790020174969700. 73700977400, 40843274000.
+ 87638944600,129471178600. 96514640400. 73715401700.
+ 76497060600.107410959900,103921924700, 42864184400.
+ 152285668600.1 01 905471400.80587472700.1 16569949100O,
+ 25888037500.1 554283637D0.1 15586257900.864839676000.
+ 91 589250700. 61477968500. 39184249600. 38000681000,
+ 201176925100,1 8601392300,1I92059708800.1 90341295800.
+ 51180682300. 97916789700,195880642200.125690970800.
+ 58148868200, 33425858100. 6858047800. 53489794400.
+ 2516763400105107252800.210165523400.141369805100.
+ 79632234100O, 69810884600,154424945600, 85701018800.
+ 186048820100. 35538910500.177472244900,158240511700,
+ 55348974100,141100776700,123010254500. 35626747800,
+ 77808466300,190501441700.1 10987133000.170431822000,
+ 27059373800. 4833891110DO, 32312801300, 36107689000/
DATA SEEDISBYM*1.0/
DATA S/Of
DAAM/0/
END
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TABLE I-1: INITIALIZATION SEEDS USED TO GENERATE RANDOM
NORMAL DEVIATES FOR 20 CROSS-SAMPLES IN DESIGN A
(XX1-XX2o)

Cross-Sample Initialization Seed

XXI 2102089753
XX2 1396324989
XX3 594201671
XX4 1049251362
XX5 195748861
XX6 2143136572
XX7 160875454
XX8 851439770
XX9 126617071
XXi0 1318897636
Xxil 514694161
XXI2 1410932621
XX13 603731346
XXI4 1410147358
XX15 706848193
XXI6 340061464
XXi7 1218029222
XX18 1037466748
XX19 983209347
XX20 2067888841
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